Final Technical Report (open access)

Final Technical Report

The research project focuses on the following topics: a) removal of artifacts in the Doppler spectra from the ARM cloud radars, b) development of the second generation Active Remote Sensing of Cloud Layers (ARSCL) cloud data products, and c) evaluation of ARM cloud property retrievals within the framework of the EarthCARE simulator. We continue to pursue research on areas related to radiative transfer, atmospheric heating rates and related dynamics (topics of interest to the ARM science community at this time) and to contribute on an ad-hoc basis to the science of other ARM-supported principal investigators.
Date: February 22, 2010
Creator: Eugene Clothiaux, Johannes Verlinde, Jerry Harrington
Object Type: Report
System: The UNT Digital Library
Lead-Cooled Fast Reactor (LFR) Design: Safety, Neutronics, Thermal Hydraulics, Structural Mechanics, Fuel, Core, and Plant Design (open access)

Lead-Cooled Fast Reactor (LFR) Design: Safety, Neutronics, Thermal Hydraulics, Structural Mechanics, Fuel, Core, and Plant Design

Fifth chapter from "A Compendium of Reactor Technology" discussing the history and design of lead-cooled fast reactors in nine sections: Lead-cooled Fast Reactor (LFR) Development, Design Criteria and General Specifications, Neutronics, Lead Properties, Compatibility of Structural Materials with Lead, Core, Reactor System, Decay Heat Removal System, and Nuclear Island.
Date: February 22, 2010
Creator: Smith, Craig; Cinotti, L.; Artoli, C. & Grasso, G.
Object Type: Book Chapter
System: The UNT Digital Library
An Assessment of the Penetrations in the First Wall Required for Plasma Measurments for Control of an Advanced Tokamak Plasma Demo (open access)

An Assessment of the Penetrations in the First Wall Required for Plasma Measurments for Control of an Advanced Tokamak Plasma Demo

A Demonstration tokamak (Demo) is an essential next step toward a magnetic-fusion based reactor. One based on advanced-tokamak (AT) plasmas is especially appealing because of its relative compactness. However, it will require many plasma measurements to provide the necessary signals to feed to ancillary systems to protect the device and control the plasma. This note addresses the question of how much intrusion into the blanket system will be required to allow the measurements needed to provide the information required for plasma control. All diagnostics will require, at least, the same shielding designs as planned for ITER, while having the capability to maintain their calibration through very long pulses. Much work is required to define better the measurement needs and the quantity and quality of the measurements that will have to be made, and how they can be integrated into the other tokamak structures.
Date: February 22, 2010
Creator: Young, Kenneth M.
Object Type: Report
System: The UNT Digital Library
Atmospheric Stability Impacts on Power Curves of Tall Wind Turbines - An Analysis of a West Coast North American Wind Farm (open access)

Atmospheric Stability Impacts on Power Curves of Tall Wind Turbines - An Analysis of a West Coast North American Wind Farm

Tall wind turbines, with hub heights at 80 m or above, can extract large amounts of energy from the atmosphere because they are likely to encounter higher wind speeds, but they face challenges given the complex nature of wind flow and turbulence at these heights in the boundary layer. Depending on whether the boundary layer is stable, neutral, or convective, the mean wind speed, direction, and turbulence properties may vary greatly across the tall turbine swept area (40 to 120 m AGL). This variability can cause tall turbines to produce difference amounts of power during time periods with identical hub height wind speeds. Using meteorological and power generation data from a West Coast North American wind farm over a one-year period, our study synthesizes standard wind park observations, such as wind speed from turbine nacelles and sparse meteorological tower observations, with high-resolution profiles of wind speed and turbulence from a remote sensing platform, to quantify the impact of atmospheric stability on power output. We first compare approaches to defining atmospheric stability. The standard, limited, wind farm operations enable the calculation only of a wind shear exponent ({alpha}) or turbulence intensity (I{sub U}) from cup anemometers, while the presence at this …
Date: February 22, 2010
Creator: Wharton, S & Lundquist, J K
Object Type: Report
System: The UNT Digital Library
Radiochemistry diagnostics for the National Ignition Facility (open access)

Radiochemistry diagnostics for the National Ignition Facility

Radiochemistry-based techniques will be an important complement to x-ray implosion diagnostics. Simulations demonstrate the value of alpha-induced or deuteron-induced reactions as a direct measurement of static mix contamination in DT-filled ignition capsules. In this proceedings we examine to what extent neutron-induced reactions might be highly correlated with the energetically down-scattered neutron fraction which is, in turn, related to the critical quantity of fuel areal density, {rho}R. Although alpha and deuteron reactions are highly suppressed in HT/D-filled capsules, neutron-induced reactions produce robust abundances and 2% measurements of the relevant radiological ratios is achievable. We conclude that radiochemical data are strongly correlated with the down-scattered fraction and fuel areal density. Unknown physics, primarily uncertainties in the direct T-T fusion neutron cross section and, to a lesser extent, various radiochemical production cross sections are important but calibration shots can be used to reduce these errors. The primary advantage of radiochemistry remains - it is the only technique that samples down-scattered neutrons from the entire capsule during the burn. In particular radiochemistry correlated with other diagnostics can be used to minimize experimental uncertainties and thus maximize gain.
Date: February 22, 2010
Creator: Hoffman, R. D.; Cerjan, C. J.; Shaughnessy, D. A.; Moody, K. J.; Nelson, S. L.; Bernstein, L. A. et al.
Object Type: Article
System: The UNT Digital Library
Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields (open access)

Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings …
Date: February 22, 2010
Creator: McRae, Steve; Walsh, Thomas; Dunn, Michael & Cook, Michael
Object Type: Report
System: The UNT Digital Library
Non-Universality of Transverse Momentum Dependent Parton Distributions at Small-x (open access)

Non-Universality of Transverse Momentum Dependent Parton Distributions at Small-x

We study the universality of the transverse momentum dependent parton distributions at small-x, by comparing the initial/final state interaction effects in dijet-correlation in pA collisions with that in deep inelastic lepton nucleus scattering. We demonstrate the non-universality by an explicit calculation in a particular model where the multiple gauge boson exchange contributions are summed up to all orders. We furthercomment on the implications of our results on the theoretical interpretation of di-hadron correlation in dA collisions in terms of the saturation phenomena in deep inelastic lepton nucleus scattering.
Date: February 22, 2010
Creator: Xiao, Bowen & Yuan, Feng
Object Type: Article
System: The UNT Digital Library
CgWind: A high-order accurate simulation tool for wind turbines and wind farms (open access)

CgWind: A high-order accurate simulation tool for wind turbines and wind farms

CgWind is a high-fidelity large eddy simulation (LES) tool designed to meet the modeling needs of wind turbine and wind park engineers. This tool combines several advanced computational technologies in order to model accurately the complex and dynamic nature of wind energy applications. The composite grid approach provides high-quality structured grids for the efficient implementation of high-order accurate discretizations of the incompressible Navier-Stokes equations. Composite grids also provide a natural mechanism for modeling bodies in relative motion and complex geometry. Advanced algorithms such as matrix-free multigrid, compact discretizations and approximate factorization will allow CgWind to perform highly resolved calculations efficiently on a wide class of computing resources. Also in development are nonlinear LES subgrid-scale models required to simulate the many interacting scales present in large wind turbine applications. This paper outlines our approach, the current status of CgWind and future development plans.
Date: February 22, 2010
Creator: Chand, K K; Henshaw, W D; Lundquist, K A & Singer, M A
Object Type: Article
System: The UNT Digital Library
Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine (open access)

Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine

Broad Funding Opportunity Announcement Project: FloDesign Wind Turbine’s innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbine’s unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable to larger-scale conventional turbines.
Date: February 22, 2010
Creator: unknown
Object Type: Text
System: The UNT Digital Library
Enhanced Named Entity Extraction via Error-Driven Aggregation (open access)

Enhanced Named Entity Extraction via Error-Driven Aggregation

Despite recent advances in named entity extraction technologies, state-of-the-art extraction tools achieve insufficient accuracy rates for practical use in many operational settings. However, they are not generally prone to the same types of error, suggesting that substantial improvements may be achieved via appropriate combinations of existing tools, provided their behavior can be accurately characterized and quantified. In this paper, we present an inference methodology for the aggregation of named entity extraction technologies that is founded upon a black-box analysis of their respective error processes. This method has been shown to produce statistically significant improvements in extraction relative to standard performance metrics and to mitigate the weak performance of entity extractors operating under suboptimal conditions. Moreover, this approach provides a framework for quantifying uncertainty and has demonstrated the ability to reconstruct the truth when majority voting fails.
Date: February 22, 2010
Creator: Lemmond, T. D.; Perry, N. C.; Guensche, J. W.; Nitao, J. J.; Glaser, R. E.; Kidwell, P. et al.
Object Type: Article
System: The UNT Digital Library
Identifying the Proteins that Mediate the Ionizing Radiation Resistance of Deinococcus Radiodurans R1 (open access)

Identifying the Proteins that Mediate the Ionizing Radiation Resistance of Deinococcus Radiodurans R1

The primary objectives of this proposal was to define the subset of proteins required for the ionizing radiation (IR) resistance of Deinococcus radiodurans R1, characterize the activities of those proteins, and apply what was learned to problems of interest to the Department of Energy.
Date: February 22, 2010
Creator: Battista, John R
Object Type: Report
System: The UNT Digital Library