Argonne National Laboratory Institutional Plan FY 2000 - FY 2005. (open access)

Argonne National Laboratory Institutional Plan FY 2000 - FY 2005.

None
Date: December 22, 1999
Creator: Beggs, S. D. & Director, Office of The
System: The UNT Digital Library
FY04&05 LDRD Final Report Fission Fragment Sputtering (open access)

FY04&05 LDRD Final Report Fission Fragment Sputtering

Fission fragments born within the first 7 {micro}m of the surface of U metal can eject a thousand or more atoms per fission event. Existing data in the literature show that the sputtering yield ranges from 10 to 10,000 atoms per fission event near the surface, but nothing definitive is known about the energy of the sputtered clusters. Experimental packages were constructed allowing the neutron irradiation of natural uranium foils to investigate the amount of material removed per fission event and the kinetic energy distribution of the sputtered atoms. Samples were irradiated but were never analyzed after irradiation. Similar experiments were attempted in a non-radioactive environment using accelerator driven ions in place of fission induced fragments. These experiments showed that tracks produced parallel to the surface (and not perpendicular to the surface) are the primary source of the resulting particulate ejecta. Modeling studies were conducted in parallel with the experimental work. Because the reactor irradiation experiments were not analyzed, data on the energy of the resulting particulate ejecta was not obtained. However, some data was found in the literature on self sputtering of {sup 252}Cf that was used to estimate the velocity and hence the energy of the ejected particulates. …
Date: February 22, 2006
Creator: Ebbinghaus, B.; Trelenberg, T.; Meier, T.; Felter, T.; Sturgeon, J.; Kuboda, A. et al.
System: The UNT Digital Library
FY04 LDRD Final Report:Properties of Actinide Nanostructures (open access)

FY04 LDRD Final Report:Properties of Actinide Nanostructures

Two papers completely describe the objectives and work performed in this laboratory directed research and development (LDRD) project. The first paper published in Review of Scientific Instruments (UCRL-JC-152913) describes the purpose, construction, and operation of a novel instrument to produce and characterize actinide nanostructures by pulsed laser deposition. The second paper submitted to Physical Review B (UCRL-JRNL-209427) describes our work quantifying the oxidation of pulsed laser deposited depleted uranium nanostructures by following the evolution of the electronic structure.
Date: February 22, 2005
Creator: Hamza, A. V.; Trelenberg, T. W. & Tobin, J. G.
System: The UNT Digital Library