Resource Type

Degree Department

States

Language

120 Matching Results

Results open in a new window/tab.

Evaluation of production samples of the scintillators LaBr3:Ce and LaCl3:Ce (open access)

Evaluation of production samples of the scintillators LaBr3:Ce and LaCl3:Ce

We report on the evaluation of the performance of two recently developed scintillator materials, LaCl{sub 3}:Ce and LaBr{sub 3}:Ce, at the task of gamma ray spectroscopy. Their performance is compared to a standard scintillator used for gamma ray spectroscopy--a 25 mm diameter 25 mm tall cylinder of NaI:Tl. We measure the pulse height, energy resolution, and full-energy efficiency of production LaBr{sub 3}:Ce and LaCl{sub 3}:Ce scintillation crystals of different sizes and geometries for a variety of gamma-ray energies. Using production rather than specially selected crystals will establish whether immediate large-scale use is feasible. The crystal is excited by gamma rays from one of six isotopic sources ({sup 125}I, {sup 241}Am, {sup 57}Co, {sup 22}Na, {sup 137}Cs, and {sup 60}Co) placed 15 cm away from the scintillator. Our measurements show that both LaCl{sub 3} and LaBr{sub 3} outperform NaI:Tl in almost all cases. They outperform NaI:Tl at all energies for the photopeak fraction and counting rate measurements, and for energy resolution at higher energies (above 200 keV for LaCl{sub 3} and 75 keV for LaBr{sub 3}). The performance of production crystals is excellent and these scintillators should be considered for immediate use in systems where stopping power and energy resolution are …
Date: September 15, 2005
Creator: Choong, Woon-Seng; Derenzo, Stephen E. & Moses, William W.
System: The UNT Digital Library
Comparing FRACHEM and TOUGHREACT for reactive transport modelingof brine-rock interactions in enhanced geothermal systems (EGS) (open access)

Comparing FRACHEM and TOUGHREACT for reactive transport modelingof brine-rock interactions in enhanced geothermal systems (EGS)

Coupled modelling of fluid flow and reactive transport ingeothermal systems is challenging because of reservoir conditions such ashigh temperatures, elevated pressures and sometimes high salinities ofthe formation fluids. Thermal hydrological-chemical (THC) codes, such asFRACHEM and TOUGHREACT, have been developed to evaluate the long-termhydrothermal and chemical evolution of exploited reservoirs. In thisstudy, the two codes were applied to model the same geothermal reservoir,to forecast reservoir evolution using respective thermodynamic andkinetic input data. A recent (unreleased) TOUGHREACT version allows theuse of either an extended Debye-Hu?ckel or Pitzer activity model forcalculating activity coefficients, while FRACHEM was designed to use thePitzer formalism. Comparison of models results indicate that differencesin thermodynamic equilibrium constants, activity coefficients andkinetics models can result in significant differences in predictedmineral precipitation behaviour and reservoir-porosity evolution.Differences in the calculation schemes typically produce less differencein model outputs than differences in input thermodynamic and kineticdata, with model results being particularly sensitive to differences inion-interaction parameters for highsalinity systems.
Date: November 15, 2005
Creator: Andre, L.; Spycher, N.; Xu, T.; Pruess, K. & Vuataz, F.-D.
System: The UNT Digital Library
Motivation, description, and summary status of geomechanical andgeochemical modeling studies in Task D of the InternationalDECOVALEX-THMC Project (open access)

Motivation, description, and summary status of geomechanical andgeochemical modeling studies in Task D of the InternationalDECOVALEX-THMC Project

The DECOVALEX project is an international cooperativeproject initiated by SKI, the Swedish Nuclear Power Inspectorate, withparticipation of about 10 international organizations. The general goalof this project is to encourage multidisciplinary interactive andcooperative research on modelling coupledthermo-hydro-mechanical-chemical (THMC) processes in geologic formationsin support of the performance assessment for underground storage ofradioactive waste. One of the research tasks, initiated in 2004 by theU.S. Department of Energy (DOE), addresses the long-term impact ofgeomechanical and geochemical processes on the flow conditions near wasteemplacement tunnels. Within this task, four international research teamsconduct predictive analysis of the coupled processes in two genericrepositories, using multiple approaches and different computer codes.Below, we give an overview of the research task and report its currentstatus.
Date: November 15, 2005
Creator: Birkholzer, J.T.; Barr, D.; Rutqvist, J. & Sonnenthal, E.
System: The UNT Digital Library
Coherent Synchrotron Radiation as a Diagnostic Tool for the LCLS Longitudinal Feedback System (open access)

Coherent Synchrotron Radiation as a Diagnostic Tool for the LCLS Longitudinal Feedback System

The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL). To ensure the vitality of FEL lasing, a longitudinal feedback system is required together with other diagnostics. In this paper, we study the possibility of using Coherent Synchrotron Radiation (CSR) from the chicane as a diagnostic tool for bunch length feedback. Studies show that CSR is a good candidate, even for a non-Gaussian, double-horn longitudinal charge distribution as in the LCLS. We further check the possibility for detecting possible microbunching.
Date: June 15, 2005
Creator: Wu, Juhao; Emma, P. & Huang, Z.
System: The UNT Digital Library
Physics of arcing, and implications to sputter deposition (open access)

Physics of arcing, and implications to sputter deposition

Arc and glow discharges are defined based on their cathode processes. Arcs are characterized by collective electron emission, which can be stationary with hot cathodes (thermionic arcs), or non-stationary with cold cathodes (cathodic arcs). A brief review on cathodic arc properties serves as the starting point to better understand arcing phenomena in sputtering. Although arcing occurs in both metal and reactive sputtering, it is more of an issue in the reactive case. Arcing occurs if sufficiently high field strength leads to thermal runaway of an electron emission site. The role of insulating layers and surface potential adjustment through current leakage is highlighted. In the situation of magnetron sputtering with ''racetrack'', the need for a model with two spatial dimensions is shown. In many cases, arcing is initiated by breakdown of dielectric layers and inclusions. It is most efficiently prevented if formation and excessive charge-up of dielectric layers and inclusions can be avoided.
Date: March 15, 2005
Creator: Anders, Andre
System: The UNT Digital Library
Laser-beam propagation in high temperature hohlraum plasmas (open access)

Laser-beam propagation in high temperature hohlraum plasmas

The authors have developed a new target platform to study propagation and backscatter of a frequency-doubled (2{omega}) laser beam through large-scale length plasmas at ignition-design densities, intensities and temperatures above 3 keV. The plasma is created by heating a gas filled hohlraum target with 37 heater beams that deliver a total energy of up to 15 kJ in a 1 ns square pulse. They measure a factor of two higher temperatures than in open geometry gasbag targets investigated earlier. This new temperature regime with a measured beam transmission of up to 80% suggests we can expect good laser coupling into ignition hohlraums at the National Ignition Facility (NIF) using 2{omega} light.
Date: September 15, 2005
Creator: Niemann, C.; Froula, D.; Divol, L.; Meezan, N.; Jones, O.; Ross, R. et al.
System: The UNT Digital Library
Dynamic Stark Effect and Forbidden-Transition Spectral Lineshapes (open access)

Dynamic Stark Effect and Forbidden-Transition Spectral Lineshapes

We report on an experimental and theoretical study of thedynamic (ac) Stark effect on a for bidden transition. A general frameworkfor parameterizing and describing off-resonant ac-Stark shifts ispresented. A model is developed to calculate spectral line shapesresulting from resonant excitation of atoms in an intense standinglight-wave in the presence of off-resonant ac-Stark shifts. The model isused in the analysis and interpretation of a measurement of the ac-Starkshifts of the static-electric-field-induced 6s2 1S0 -->5d6s 3D1transition at 408 nm in atomic Yb. The results are in agreement withestimates of the ac-Stark shift of the transition under the assumptionthat the shift is dominated by that of the 6s2 1S0 ground state. Adetailed description of the experiment and analysis is presented. Abi-product of this work is an ind ependent determination (from thesaturation behavior of the 408-nm transition) of the Stark transitionpolarizability, which is found to be in agreement with our earliermeasurement. This work is part of the ongoing effort aimed at a precisionmeasurement of atomic parity-violation effects in Yb.
Date: December 15, 2005
Creator: Stalnaker, Jason E.; Budker, D.; Freedman, S. J.; Guzman, J. S.; Rochester, S. M. & Yashchuk, V. V.
System: The UNT Digital Library
Physical and Chemical Analytical Analysis: A key component of Bioforensics (open access)

Physical and Chemical Analytical Analysis: A key component of Bioforensics

The anthrax letters event of 2001 has raised our awareness of the potential importance of non-biological measurements on samples of biological agents used in a terrorism incident. Such measurements include a variety of mass spectral, spectroscopic, and other instrumental techniques that are part of the current armamentarium of the modern materials analysis or analytical chemistry laboratory. They can provide morphological, trace element, isotopic, and other molecular ''fingerprints'' of the agent that may be key pieces of evidence, supplementing that obtained from genetic analysis or other biological properties. The generation and interpretation of such data represents a new domain of forensic science, closely aligned with other areas of ''microbial forensics''. This paper describes some major elements of the R&D agenda that will define this sub-field in the immediate future and provide the foundations for a coherent national capability. Data from chemical and physical analysis of BW materials can be useful to an investigation of a bio-terror event in two ways. First, it can be used to compare evidence samples collected at different locations where such incidents have occurred (e.g. between the powders in the New York and Washington letters in the Amerithrax investigation) or between the attack samples and those seized …
Date: February 15, 2005
Creator: Velsko, S P
System: The UNT Digital Library
A Model Study of Transverse Mode Coupling Instability at National Synchrotron Light Source-II (Nsls-II). (open access)

A Model Study of Transverse Mode Coupling Instability at National Synchrotron Light Source-II (Nsls-II).

The vertical impedances of the preliminary designs of National Synchrotron Light Source II (NSLS-II) Mini Gap Undulators (MGU) are calculated by means of GdfidL code. The Transverse Mode Coupling Instability (TMCI) thresholds corresponding to these impedances are estimated using an analytically solvable model.
Date: May 15, 2005
Creator: Blednykh, A. & Wang, J. M.
System: The UNT Digital Library
RESEARCH AND DEVELOPMENT OF A VARIABLE POLARIZATION SUPERCONDUCTING UNDULATOR AT THE NSLS. (open access)

RESEARCH AND DEVELOPMENT OF A VARIABLE POLARIZATION SUPERCONDUCTING UNDULATOR AT THE NSLS.

In this paper a new concept for a planar, superconductive, variable polarization undulator (VPU) is presented. Advantage of this design include: (1) electrical tunability for both right and left circular and elliptical, as well as linear vertical or horizontal, (2) it requires no compensation of unwanted vertical field component and (3) used only simple windings of superconductive wire in an interlaced pattern. The construction of the device is described and compared with a permanent magnet VPU with the same gap and period, as well as with previously published concepts.
Date: May 15, 2005
Creator: CHOUHAN, S.; HARDER, D.; RAKOWSKY, G. & AL., ET
System: The UNT Digital Library
Topology Changing Transitions in Bubbling Geometries (open access)

Topology Changing Transitions in Bubbling Geometries

Topological transitions in bubbling half-BPS Type IIB geometries with SO(4) x SO(4) symmetry can be decomposed into a sequence of n elementary transitions. The half-BPS solution that describes the elementary transition is seeded by a phase space distribution of fermions filling two diagonal quadrants. We study the geometry of this solution in some detail. We show that this solution can be interpreted as a time dependent geometry, interpolating between two asymptotic pp-waves in the far past and the far future. The singular solution at the transition can be resolved in two different ways, related by the particle-hole duality in the effective fermion description. Some universal features of the topology change are governed by two-dimensional Type 0B string theory, whose double scaling limit corresponds to the Penrose limit of AdS_5 x S5 at topological transition. In addition, we present the full class of geometries describing the vicinity of the most general localized classical singularity that can occur in this class of half-BPS bubbling geometries.
Date: February 15, 2005
Creator: Horava, Petr & Shepard, Peter G.
System: The UNT Digital Library
Topology Changing Transitions in Bubbling Geometries (open access)

Topology Changing Transitions in Bubbling Geometries

Topological transitions in bubbling half-BPS Type IIB geometries with SO(4) x SO(4) symmetry can be decomposed into a sequence of n elementary transitions. The half-BPS solution that describes the elementary transition is seeded by a phase space distribution of fermions filling two diagonal quadrants. We study the geometry of this solution in some detail. We show that this solution can be interpreted as a time dependent geometry, interpolating between two asymptotic pp-waves in the far past and the far future. The singular solution at the transition can be resolved in two different ways, related by the particle-hole duality in the effective fermion description. Some universal features of the topology change are governed by two-dimensional Type 0B string theory, whose double scaling limit corresponds to the Penrose limit of AdS_5 x S^5 at topological transition. In addition, we present the full class of geometries describing the vicinity of the most general localized classical singularity that can occur in this class of half-BPS bubbling geometries.
Date: February 15, 2005
Creator: Horava, Petr & Shepard, Peter G.
System: The UNT Digital Library
Modeling coupled thermal-hydrological-chemical processes in theunsaturated fractured rock of Yucca Mountain, Nevada: Heterogeneity andseepage (open access)

Modeling coupled thermal-hydrological-chemical processes in theunsaturated fractured rock of Yucca Mountain, Nevada: Heterogeneity andseepage

An understanding of processes affecting seepage intoemplacement tunnels is needed for correctly predicting the performance ofunderground radioactive waste repositories. It has been previouslyestimated that the capillary and vaporization barriers in the unsaturatedfractured rock of Yucca Mountain are enough to prevent seepage underpresent day infiltration conditions. It has also been thought that asubstantially elevated infiltration flux will be required to causeseepage after the thermal period is over. While coupledthermal-hydrological-chemical (THC) changes in Yucca Mountain host rockdue to repository heating has been previously investigated, those THCmodels did not incorporate elements of the seepage model. In this paper,we combine the THC processes in unsaturated fractured rock with theprocesses affecting seepage. We observe that the THC processes alter thehydrological properties of the fractured rock through mineralprecipitation and dissolution. We show that such alteration in thehydrological properties of the rock often leads to local flow channeling.We conclude that such local flow channeling may result in seepage undercertain conditions, even with nonelevated infiltrationfluxes.
Date: July 15, 2005
Creator: Mukhopadhyay, Sumit; Sonnenthal, Eric L. & Spycher, Nicolas
System: The UNT Digital Library
Krakatau's long goodbye in the Ocean (open access)

Krakatau's long goodbye in the Ocean

State-of-the-art climate models suggest that 20th Century ocean warming and sea-level rise were substantially reduced by the 1883 eruption of Krakatau. Volcanically induced cooling of the ocean surface penetrated into deeper layers where it persisted for decades. We find that volcanic eruptions have longer lasting effects than previously suspected, sufficient to offset a large fraction of ocean warming and sea-level rise caused by anthropogenic influences over the 20th Century. We examine the latest suite of coupled ocean-atmosphere model experiments that include time-varying external forcings (e.g., changes in greenhouse gases, solar irradiance, sulfate aerosols and volcanic aerosols) for the period 1880-2000 (see Methods). These models have differences in physics, resolution, initial conditions, 'spin-up' and ocean-atmosphere coupling procedures, as well as different combinations of external forcings. Uncertainties in both the applied forcings and in the model responses to them are therefore inherent in our investigation.
Date: December 15, 2005
Creator: Gleckler, P.; Wigley, T.; Santer, B.; Gregory, J.; AchutaRao, K. & Taylor, K.
System: The UNT Digital Library
A Piecewise Linear Finite Element Discretization of the Diffusion Equation for Arbitrary Polyhedral Grids (open access)

A Piecewise Linear Finite Element Discretization of the Diffusion Equation for Arbitrary Polyhedral Grids

We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids.
Date: July 15, 2005
Creator: Bailey, T S; Adams, M L; Yang, B & Zika, M R
System: The UNT Digital Library
Hydrogen Permeation Resistant Coatings (open access)

Hydrogen Permeation Resistant Coatings

As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings may be applied to these ferrous alloys to retard hydrogen ingress. Hydrogen is known to be very mobile in materials of construction. In this study, the permeation resistance of bare stainless steel samples and coated stainless steel samples was tested. The permeation resistance was measured using a modular permeation rig using a pressure rise technique. The coating microstructure and permeation results will be discussed in this document as will some additional testing.
Date: June 15, 2005
Creator: Korinko, Paul; Adams, Thad & Creech, Greggory
System: The UNT Digital Library
Traditional and Model Based Assay of Irregular Geometry Items (open access)

Traditional and Model Based Assay of Irregular Geometry Items

The Analytical Development Section (ADS) of SRNL was requested to perform a waste disposal assay of two heater boxes which had been used in the HB Line dissolvers. They had been sent to SRNL for study to make recommendations on how to prevent future failure of the units when they were replaced. The study having been completed, the units needed to be characterized prior to sending to Solid Waste for disposal. An assay station consisting of a turntable, HPGe detector, CANBERRA Inspector, transmission source and a portable computer was set up to do the required assays. The assays indicate the presence of U-235, Pu-239 and Cs-137. No measurable amounts of U-235 or Pu-239 were found. Therefore the Minimum Detectable Activities for U-235 and Pu-239 were calculated. For Heater Box 1, 0.23 grams of U-235 and 0.24 grams of Pu-239. For Heater Box 2, the results were 0.21 grams of U-235 and 0.21 grams of Pu-239. This paper describes and documents the assays employed to determine the amount of U, Pu and Cs contents of the heater boxes. The paper provides results of SNM assays using traditional calibration of the system and on one based on modeling. It also provides the …
Date: June 15, 2005
Creator: MOORE, FRANK S. & SALAYMEH, SALEEM
System: The UNT Digital Library
Nonlinearly Additive Forces in Multivalent Ligand Binding to a Single Protein Revealed with Force Spectroscopy (open access)

Nonlinearly Additive Forces in Multivalent Ligand Binding to a Single Protein Revealed with Force Spectroscopy

We present evidence of multivalent interactions between a single protein molecule and multiple carbohydrates at a pH where the protein can bind four ligands. The evidence is based not only on measurements of the force required to rupture the bonds formed between ConcanavalinA (ConA) and {alpha}-D-mannose, but also on an analysis of the polymer-extension force curves to infer the polymer architecture that binds the protein to the cantilever and the ligands to the substrate. We find that although the rupture forces for multiple carbohydrate connections to a single protein are larger than the rupture force for a single connection, they do not scale additively with increasing number. Specifically, the most common rupture forces are approximately 46, 66, and 85 pN, which we argue corresponds to 1, 2, and 3 ligands being pulled simultaneously from a single protein as corroborated by an analysis of the linkage architecture. As in our previous work polymer tethers allow us to discriminate between specific and non-specific binding. We analyze the binding configuration (i.e. serial versus parallel connections) through fitting the polymer stretching data with modified Worm-Like Chain (WLC) models that predict how the effective stiffness of the tethers is affected by multiple connections. This analysis …
Date: July 15, 2005
Creator: Ratto, T V; Rudd, R E; Langry, K C; Balhorn, R L & McElfresh, M W
System: The UNT Digital Library
Molecular Thermodynamics for Swelling of a Mesoscopic Ionomer Gelin 1:1 Salt Solutions (open access)

Molecular Thermodynamics for Swelling of a Mesoscopic Ionomer Gelin 1:1 Salt Solutions

For a microphase-separated diblock copolymer ionic gel swollen in salt solution, a molecular-thermodynamic model is based on the self-consistent field theory in the limit of strongly segregated copolymer subchains. The geometry of microdomains is described using the Milner generic wedge construction neglecting the packing frustration. Thermodynamic functions are expressed analytically for gels of lamellar, bicontinuous, cylindrical and spherical morphologies. Molecules are characterized by chain composition, length, rigidity, degree of ionization, and by effective polymer-polymer and polymer-solvent interaction parameters. The model predicts equilibrium solvent uptakes and the equilibrium microdomain spacing for gels swollen in salt solutions. Results are given for details of the gel structure: distribution of mobile ions and polymer segments, and the electric potential across microdomains. Apart from effects obtained by coupling classical Flory-Rehner theory with Donnan equilibria, viz., increased swelling with polyelectrolyte charge and shrinking of gel upon addition of salt, the model predicts the effects of microphase morphology on swelling.
Date: June 15, 2005
Creator: Victorov, Alexey; Radke, Clayton & Prausnitz,John
System: The UNT Digital Library
Electron-Cloud Effects in Transport Lines of a Normal Conducting Linear Collider (open access)

Electron-Cloud Effects in Transport Lines of a Normal Conducting Linear Collider

In the transport lines of a normal conducting linear collider, the long positron bunch train can generate an electron cloud which can then amplify intra-train offsets. This is a transient effect which is similar to the electron-cloud driven coupled bunch instabilities in a positron storage ring. In this paper, we study this phenomenon analytically. Some criteria on the critical cloud density with respect to given collider parameters are discussed.
Date: June 15, 2005
Creator: Wu, Juhao; Raubenheimer, T. O.; Pivi, M. T. F. & Seryi, A.
System: The UNT Digital Library
Constraints on Short Gamma-Ray Burst Models with Optical Limits of GRB 050509b (open access)

Constraints on Short Gamma-Ray Burst Models with Optical Limits of GRB 050509b

We have obtained deep optical images with the Very Large Telescope at ESO of the first well-localized short-duration gamma-ray burst, GRB 050509b. We observed in the V and R bands at epochs starting at {approx}2 days after the GRB trigger and lasting up to three weeks. We detect no variable objects inside the small Swift/XRT X-ray error circle down to 5{sigma} limiting magnitudes of V = 26.5 and R = 25.2. The X-ray error circle includes a giant elliptical galaxy at z = 0.225, which has been proposed as the likely host of this GRB. Our limits indicate that if the GRB originated at z = 0.225, any supernova-like event accompanying the GRB would have to be over 100 times fainter than normal Type Ia SNe or Type Ic hypernovae, 5 times fainter than the faintest known Ia or Ic SNe, and fainter than the faintest known Type II SNe. Moreover, we use the optical limits to constrain the energetics of the GRB outflow, and conclude that there was very little radioactive material produced during the GRB explosion. These limits strongly constrain progenitor models for this short GRB.
Date: June 15, 2005
Creator: Hjorth, Jens; Sollerman, J.; Gorosabel, J.; Granot, J.; Klose, S.; Kouveliotou, C. et al.
System: The UNT Digital Library
Cosmological Consequences of String Axions (open access)

Cosmological Consequences of String Axions

Axion fluctuations generated during inflation lead to isocurvature and non-Gaussian temperature fluctuations in the cosmic microwave background radiation. Following a previous analysis for the model independent string axion we consider the consequences of a measurement of these fluctuations for two additional string axions. We do so independent of any cosmological assumptions except for the axions being massless during inflation. The first axion has been shown to solve the strong CP problem for most compactifications of the heterotic string while the second axion, which does not solve the strong CP problem, obeys a mass formula which is independent of the axion scale. We find that if gravitational waves interpreted as arising from inflation are observed by the PLANCK polarimetry experiment with a Hubble constant during inflation of H{sub inf} {approx}> 10{sup 13} GeV the existence of the first axion is ruled out and the second axion cannot obey the scale independent mass formula. In an appendix we quantitatively justify the often held assumption that temperature corrections to the zero temperature QCD axion mass may be ignored for temperatures T {approx}< {Lambda}{sub QCD}.
Date: December 15, 2005
Creator: Kain, Ben
System: The UNT Digital Library
Overview of the RF Systems for LCLS (open access)

Overview of the RF Systems for LCLS

The Linac Coherent Light Source (LCLS) at SLAC, when it becomes operational in 2009, will provide its user community with an X-ray source many orders of magnitude brighter than anything available in the world at that time [1]. The electron beam acceleration will be provided by existing and new RF systems capable of maintaining the amplitude and phase stability of each bunch to extremely tight tolerances. RF feedback control of the various RF systems will be fundamental in ensuring the beam arrives at the LCLS undulator at precisely the required energy and peak current phase. This paper details the requirements for RF stability for the various LCLS RF systems and also highlights proposals for how these injector and Linac RF systems can meet these tight constraints.
Date: June 15, 2005
Creator: McIntosh, P.; Akre, R.; Boyce, R.; Emma, P.; Hill, A. & Rago, C.
System: The UNT Digital Library
Fixing All Moduli for M-Theory on K3xK3 (open access)

Fixing All Moduli for M-Theory on K3xK3

We analyze M-theory compactified on K3 x K3 with fluxes preserving half the supersymmetry and its F-theory limit, which is dual to an orientifold of the type IIB string on K3 x (T{sup 2}/Z{sub 2}). The geometry of attractive K3 surfaces plays a significant role in the analysis. We prove that the number of choices for the K3 surfaces is finite and we show how they can be completely classified. We list the possibilities in one case. We then study the instanton effects and see that they will generically fix all of the moduli. We also discuss situations where the instanton effects might not fix all the moduli.
Date: June 15, 2005
Creator: Aspinwall, Paul S.; /Stanford U., Phys. Dept. /SLAC /Duke U., CGTP; Kallosh, Renata & /Stanford U., Phys. Dept.
System: The UNT Digital Library