Micro-Pipette Thermal Sensor: A Unique Technique for Thermal Characterization of Microfluids, Microsphere, and Biological Cell (open access)

Micro-Pipette Thermal Sensor: A Unique Technique for Thermal Characterization of Microfluids, Microsphere, and Biological Cell

In this research work, an innovative method for measurement of thermal conductivity of a small volume of liquids, microsphere, and the single cancer cell is demonstrated using a micro-pipette thermal sensor (MPTS). The method is based on laser point heating thermometry (LPHT) and transient heat transfer. When a single pulse of a laser beam heats the sensor tip which is in contact with the surrounding liquids or microsphere/cells, the temperature change in the sensor is reliant on the thermal properties of the surrounding sample. We developed a model for numerical analysis of the temperature change using the finite element method (FEM) in COMSOL. Then we used MATLAB to fit the simulation result with experiment data by multi-parameter fitting technique to determine the thermal conductivity. To verify the accuracy in the measurement of the thermal conductivity by the MPTS method, a 10µl sample of de-ionized (DI) water, 50%, and 70% propylene glycol solution were measured with deviation less than 2% from reported data. Also, to demonstrate that the method can be employed to measure microparticles and a single spherical cell, we measured the thermal conductivity of poly-ethylene microspheres with a deviation of less than 1% from published data. We estimated the …
Date: May 2020
Creator: Shrestha, Ramesh
System: The UNT Digital Library
An Evaluation of Long-Term Air Quality Trends in North Texas using Statistical and Machine Learning Techniques (open access)

An Evaluation of Long-Term Air Quality Trends in North Texas using Statistical and Machine Learning Techniques

While ozone design values have decreased since 2000, the values measured in Denton Airport South (DEN), an exurban region in the northwest tip of the Dallas-Fort Worth (DFW) metroplex, remains above those measured in Dallas Hinton (DAL) and Fort Worth Northwest (FWNW), two extremely urbanized regions; in addition, all three sites remained in nonattainment of National Ambient Air Quality Standards (NAAQS) ozone despite reductions in measured NOx and CO concentrations. The region's inability to achieve ozone attainment is tied to its concentration of total non-methane organic compounds (TNMOC). The mean concentration of TNMOC measured at DAL, FWNW, and DEN between 2000 and 2018 were 67.4 ± 1.51 ppb-C, 89.31 ± 2.12 ppb-C, and 220.69 ± 10.36 ppb-C, respectively. Despite being the least urbanized site of the three, the TNMOC concentration measured at DEN was over twice as large as those measured at the other two sites. A factor-based source apportionment analysis using positive matrix factorization technique showed that natural gas was a major contributing source factor to the measured TNMOC concentrations at all three sites and the dominant source factor at DEN. Natural gas accounted for 32%, 40%, and 69% of the measured TNMOC concentration at DAL, FWNW, and DEN, …
Date: May 2020
Creator: Lim, Guo Quan
System: The UNT Digital Library
Radial and Axial Designs for Magnetic Absorbent Collector in Water (open access)

Radial and Axial Designs for Magnetic Absorbent Collector in Water

The use of collection systems for magnetic sorbents such as Magnetic Activated Carbon are discussed in order to gauge their efficacy in marine environments. Two collectors were built and tested, one which utilized a radial orientation of magnets and another with axially placed magnets. The two systems underwent a series of test with differing linear velocities and angular velocities. From the results, the axial system outperformed its radial counterpart, being most effective with a relatively high concentration of discs placed in series. The medium concentration, however, proved increasingly effective with higher velocities, meaning an optimization concentration exists for this design. The radial system was tested with high and low concentrations of small and large magnets, respectively. The larger magnets, although providing less concentration points in the alternating array, proved more effective for the collection of MAC. From these tests several new innovations were suggested, including belt tensioners, add on mechanisms, and a hybridized design in order to fully optimize the collection of MAC.
Date: August 2020
Creator: Renzetti, Andrew John
System: The UNT Digital Library
Design Optimization of Functionalized Silica-Polymer Nanocomposite through Finite Element and Molecular Dynamics Modeling (open access)

Design Optimization of Functionalized Silica-Polymer Nanocomposite through Finite Element and Molecular Dynamics Modeling

This dissertation focuses on studying membrane air dehumidification for a membrane moisture exchanger in a membrane heat pump system. The study has two parts: an optimization of membrane moisture exchanger for air dehumidification in the macroscale, and diffusion of water vapor in polymer nanocomposites membrane for humid air dehumidification in the nanoscale. In the first part of the research, the mass transport of water vapor molecules through hydrophilic silica nanochannel chains in hydrophobic polyurethane matrix was studied by simulations and experiments for different membrane moisture exchanger design configurations. The mass transport across the polymer nanocomposite membrane occurs with the diffusion of moist air water vapor molecules in the membrane moisture exchanger in a membrane heat pump air conditioning system for air dehumidification purposes. The hydrophobic polyurethane matrix containing the hydrophilic silica nanochannel chains membrane is responsible for transporting water vapor molecules from the feed side to the permeate side of the membrane without allowing air molecules to pass through.In the second part of the research, diffusion analysis of the polymer nanocomposite membrane were performed in the nanoscale for the polymer nanocomposite membrane. The diffusion phenomena through the polymer, the polymer nanocomposite without modifying the silica surfaces, and the polymer nanocomposite …
Date: August 2020
Creator: Almahmoud, Omar H. M.
System: The UNT Digital Library

Refrigeration Insulation Using Phase Change Material Incorporated Polyurethane Foam for Energy Savings

Incorporating insulation material with phase change materials (PCMs) could help enhance the insulation capability for a refrigerator system. The phase change material can absorb or release large amount of latent heat of fusion depending on surrounding temperatures for efficient thermal management. This research focuses on how incorporating PCM to the conventional PU foam insulation affects the inside temperatures of the refrigerator system and in-turn helps in conserving energy by reducing the compressor run time. It was found that only 0.25-inch-thick PCM layer in insulation can certainly benefit the refrigerators by reducing the amount of electricity consumption and thus increasing the total energy savings through the numerical study results via COMSOL Multiphysics in this study. This work aims to investigate a PCM-incorporated insulation material to accomplish the enhancement of thermal insulation performance for refrigerators.
Date: August 2020
Creator: Shaik, Sania
System: The UNT Digital Library

Passive Control of Fiber Orientation in Direct Ink Writing 3D Printing

Several active methods, which requires external control systems and moving parts, have been developed to control the fiber orientation during 3D printing. Active mechanisms like rotating nozzle, impeller, and magnetic field have been integrated to realize complex internal fiber structures. In this study, instead of using active methods, I investigate a passive method for controlling the fiber orientation without any moving parts or additional mechatronics added in the printing process. Composites of polydimethylsiloxane (PDMS) and glass fibers (GF) are 3D printed. Channels, such as helicoid, are designed and integrated to guide the ink flow and passively result in different pre-alignment of fibers before the ink flow into narrow nozzle space. While passing through the designed channels, the fibers orient due to the shear between channel walls and the ink. The effect of helicoids with different pitch sizes are investigated via mechanical experiments, microstructural analysis, and numerical simulations. The results show that both surface to volume ratio and helix angle of the channel affect pre-alignment of fiber orientation at the entry of nozzle. The internal fiber structures lead to enhanced and tunable mechanical properties of printed composites. Pitch size 7-9 mm (helix angle of 7.92- 10.15o) is found to be optimal …
Date: August 2020
Creator: Khatri, Nava Raj
System: The UNT Digital Library

Heat Transfer Analysis of a Small Thermochemical Reactor for Hydrogen Production from Ammonia

Several types of research are ongoing throughout the world, to discover economical and reliable techniques to create hydrogen, and propagate the vision of a hydrogen economy. This research examines a COMSOL Multiphysics 5.4 heat transfer model for a hydrogen production system consisting of a retort with two different heat sources, namely a heat tape and an infrared (IR) lamp. The main objective was to compare the two heat sources and find out which one offers a better technique for producing hydrogen by raising the internal center core temperature of the retort from ambient to the highest temperature, preferably 700℃, within the shortest time possible and using less power consumption in attaining the targeted temperature. Through this study, it was established that the IR lamp could potentially help with energy savings by using just 4 kWh to reach the targeted temperature within an hour.
Date: August 2020
Creator: Owusu-Ansah, Nana
System: The UNT Digital Library
The Role of Interface in Crystal Growth, Energy Harvesting and Storage Applications (open access)

The Role of Interface in Crystal Growth, Energy Harvesting and Storage Applications

A flexible nanofibrous PVDF-BaTiO3 composite material is prepared for impact sensing and biomechanical energy harvesting applications. Dielectric polyvinylidene fluoride (PVDF) and barium titanate (BaTiO3)-PVDF nanofibrous composites were made using the electrospinning process based on a design of experiments approach. The ultrasonication process was optimized using a 2k factorial DoE approach to disperse BaTiO3 particles in PVDF solution in DMF. Scanning electron microscopy was used to characterize the microstructure of the fabricated mesh. The FT-IR and Raman analysis were carried out to investigate the crystal structure of the prepared mesh. Surface morphology contribution to the adhesive property of the composite was explained through contact angle measurements. The capacitance of the prepared PVDF- BaTiO3 nanofibrous mesh was a more than 40% increase over the pure PVDF nanofibers. A comparative study of dielectric relaxation, thermodynamics properties and impact analysis of electrospun polyvinylidene fluoride (PVDF) and 3% BaTiO3-PVDF nanofibrous composite are presented. The frequency dependent dielectric properties revealed micro structural features of the composite material. The dielectric relaxation behavior is further supported by complex impedance analysis and Nyquist plots. The temperature dependence of electric modulus shows Arrhenius type behavior. The observed non-Debye dielectric relaxation in electric loss modulus follows a thermally activated process which …
Date: December 2020
Creator: Ramesh, Dinesh
System: The UNT Digital Library
Experimental Investigation on Efficiency of Fresnel Lenses with Different Manufacturing Methods (open access)

Experimental Investigation on Efficiency of Fresnel Lenses with Different Manufacturing Methods

Non-imaging Fresnel lenses have been playing an important role in improving the efficiency of the solar energy systems. Many researchers and scientists have devoted their research to optimize the design of the Fresnel lenses. Before it can contribute to energy efficiency increase, a Fresnel lens with optimized design will first need to be fabricated with the most cost-effective method as well as the best quality fabrication as possible. If targeted in a commercial market, feasibility of mass production with a minimum fabrication time would also be a consideration. To bring the design optimization of a Fresnel lens from a conceptual theory to a real-life increase in energy efficiency, the lens needs to be fabricated, tested, compared, and analyzed. This research thesis is intended to explore the performance of the lenses with optimized design through experimental investigations. The design optimization was achieved by a previous PhD student at UNT. A total of six lenses fabricated with four different methods along with two purchased lenses were tested with two different approaches. Multiple testing routes were conducted within a 10-month period to observe the effects of material decomposition and degradation on the lens performance. The resulting experimental data has provided a solid base …
Date: December 2020
Creator: Sexton, Ai Jiang
System: The UNT Digital Library
Thermal Transport Modeling in Three-Dimensional Pillared-Graphene Structures for Efficient Heat Removal (open access)

Thermal Transport Modeling in Three-Dimensional Pillared-Graphene Structures for Efficient Heat Removal

Pillared-graphene structure (PGS) is a novel three-dimensional structure consists of parallel graphene sheets that are separated by carbon nanotube (CNT) pillars that is proposed for efficient thermal management of electronics. For microscale simulations, finite element analyses were carried out by imposing a heat flux on several PGS configurations using a Gaussian pulse. The temperature gradient and distribution in the structures was evaluated to determine the optimum design for heat transfer. The microscale simulations also included conducting a mesh-independent study to determine the optimal mesh element size and shape. For nanoscale simulations, Scienomics MAPS software (Materials And Processes Simulator) along with LAMMPS (Large-scale Atomic/ Molecular Massively Parallel Simulator) were used to calculate the thermal conductivity of different configurations and sizes of PGS. The first part of this research included investigating PGS when purely made of carbon atoms using non-equilibrium molecular dynamics (NEMD). The second part included investigating the structure when supported by a copper foil (or substrate); mimicking production of PGS on copper. The micro- and nano-scale simulations show that PGS has a great potential to manage heat in micro and nanoelectronics. The fact that PGS is highly tunable makes it a great candidate for thermal management applications. The simulations were …
Date: December 2020
Creator: Almahmoud, Khaled Hasan Musa
System: The UNT Digital Library

Thermal Transport Properties Enhancement of Phase Change Material by Using Boron Nitride Nanomaterials for Efficient Thermal Management

In this research thermal properties enhancement of phase change material (PCM) using boron nitride nanomaterials such as nanoparticles and nanotubes is studied through experimental measurements, finite element method (FEM) through COMSOL 5.3 package and molecular dynamics simulations via equilibrium molecular dynamics simulation (EMD) with the Materials and Process Simulations (MAPS 4.3). This study includes two sections: thermal properties enhancement of inorganic salt hydrate (CaCl2∙6H2O) as the phase change material by mixing boron nitride nanoparticles (BNNPs), and thermal properties enhancement of organic phase change material (paraffin wax) as the phase change material via encapsulation into boron nitride nanotubes (BNNTs). The results of the proposed research will contribute to enhance the thermal transport properties of inorganic and organic phase change material applying nanotechnology for increasing energy efficiency of systems including electronic devices, vehicles in cold areas to overcome the cold start problem, thermal interface materials for efficient heat conduction and spacecraft in planetary missions for efficient thermal managements.
Date: December 2020
Creator: Barhemmati Rajab, Nastaran
System: The UNT Digital Library
A Novel Thermal Regenerative Electrochemical System for Energy Recovery from Waste Heat (open access)

A Novel Thermal Regenerative Electrochemical System for Energy Recovery from Waste Heat

Waste-heat-to-power (WHP) recovers electrical power from exhaust heat emitted by industrial and commercial facilities. Waste heat is available in enormous quantities. The U.S. Department of Energy estimates 5-13 quadrillion BTUs/yr with a technical potential of 14.6 GW are available and could be utilized to generate power by converting the heat into electricity. The research proposed here will define a system that can economically recover energy from waste heat through a thermal regenerative electrochemical system. The primary motivation came from a patent and the research sponsored by the National Renewable Energy Laboratory (NREL). The proposed system improves on this patent in four major ways: by using air/oxygen, rather than hydrogen; by eliminating the cross diffusion of counter ions and using a dual membrane cell design; and by using high concentrations of electrolytes that have boiling points below water. Therefore, this system also works at difficult-to-recover low temperatures. Electrochemical power is estimated at 0.2W/cm2, and for a 4.2 M solution at 1 L/s, the power of a 100 kW system is 425 kW. Distillation energy costs are simulated and found to be 504 kJ/s for a 1 kg/s feed stream. The conversion efficiency is then calculated at 84%. The Carnot efficiency for …
Date: May 2021
Creator: Gray, David B
System: The UNT Digital Library

Design, Fabrication and Testing of a Novel Dual-Axis Automatic Solar Tracker System Using a Fresnel-Lens Solar Concentrator

This thesis project investigates, analyzes, designs, simulates, constructs and tests a dual-axis solar tracker system to track the sun and concentrates the heat of the sunlight, using a Fresnel lens, into a small area, which is above of an evaporator, to increase the temperature of the seawater to convert it into freshwater. The dual-axis solar tracker was designed with the main objectives that the structure was portable, dismountable, lightweight, low cost, corrosion resistant, wires inside pipes, accurate, small size, follow the sun automatically, off-grid (electrical), use green energy (solar powered), and has an empty area right below of the lens. First, a 500 mm diameter flat Fresnel lens was selected and simulated based on an algorithmic method achieved by a previous PhD student at UNT using MATLAB®, to give the optimization lens dimensions. The lens profile was drawn with AutoCAD®, then output profile lens was simulated in COMSOL Multiphysics®. The objective was to provide the high efficiency, optimum and high precision of the focal rays and heat to the receiver of the evaporator. A novel dual-axis solar tracker system was then designed that is portable, dismountable, lightweight and corrosion resistant. The solar tracker tracks the sun in two axis of …
Date: August 2021
Creator: Almara, Laura Mabel
System: The UNT Digital Library

Lignocellulose-Based Nanobiocomposites for Water Purification

The research focuses on the synthesis and application of multifunctional lignocellulosic biomass bioadsorbent and nanobiocomposites for water purification. A bioadsorbent was prepared from kenaf fiber by self-activation without the use of any toxic chemicals in an innovative method. Silver nanoparticles were synthesized by the green route and then impregnated on the surface of kenaf-based activated carbon (KAC), and hemp fibers by heating and photoirradiation. The formation of hemp-based and kenaf-based silver nanocomposites was confirmed using an environmental scanning electron microscope and energy-dispersive x-ray spectroscopy. Low-cost benign nanoadsorbents demonstrated excellent capabilities for the anionic dye Congo red (CR) and cationic dye brilliant green (BG) degradation, inorganic heavy metals [Cu (II), Pb (II), and Cd (II)] adsorption and antibacterial activities. Antibacterial test via a modified disc diffusion method and minimum inhibitory concentrations was assessed towards the pathogenic strains of bacteria, E. coli and S. aureus. A working portable point-of-use filter was designed and developed, with the filter column encapsulated with nanobiocomposites for the removal of multi-metals and dye. Water samples collected from a wastewater treatment plant in Texas and a mining site in Mexico were used to determine the efficacy of the nanobiocomposites columned in the filter. A comparative analysis was also …
Date: August 2021
Creator: Mandal, Sujata
System: The UNT Digital Library

Carbon Capture Utilization for Bio-Based Building Insulation Foams

Ecological, health and environmental concerns are driving the need for bio-resourced foams for the building industry and for other applications. This is because insulation is one of the most important aspects of the building envelope. Global building insulation is expected to reach USD 27.74 billion in 2022. Conventional insulation materials currently used in buildings are made from nonrenewable products (petroleum, fiber glass). However, they yield increasing unrecyclable eco-unfriendly waste at the end of their lives; styrene and polyurethane generates over 100,000 kg of waste insulation in US alone yearly. This is because they are non-biodegradable and can remain as microplastics in the environment for 1000 years. Polyurethane contains the same amount of energy as coal. Additionally, most of the processing techniques and blowing agents used in this manufacturing of these foams are cancerous and injurious to health when inhaled. Because buildings and their construction together account for 36% of global energy use and 39% of energy-related carbon dioxide emissions annually, there is a need to develop eco-friendly foams that will serve as possible substitutes to the currently used petroleum-based foams. This dissertation examined the development and characterization of eco-friendly foams that were developed using the melt mixing technique of bio-resourced …
Date: August 2021
Creator: Oluwabunmi, Kayode Emmanuel
System: The UNT Digital Library

Remotely Controlled Magneto-Phononic Devices Achieving Nonreciprocity and Anderson Localization in Ferrofluid

Motivated by previous relevant research on phononics including both active and passive phononics, the interest of faster turnability and more functions of the active phononics of further study led to this proposing research topic: magnetic field tunable active functional phononics. The first design of magnetic field tunable reciprocal--non-reciprocal transmission acoustic device was established, material was characterized, and numerical simulation has been performed. The simulation results show clear T-symmetric breaking non-reciprocity due to energy level splitting effect with Doppler effect – an acoustic Zeeman effect. Inspired by this preliminary work, further experiments were planned to demonstrate this effective Zeeman effect in phononics and effectively charged phonons in water based ferro-fluid. The objectives of this work as the next series of tasks were to illustrate acoustic Zeeman effect and acoustic Landau levels in various strength of magnetic field to investigate a design non-reciprocal sound device with magnetic field switching, which could be controlled on the amount of non-reciprocity with the strength of magnetic field. Once this new field first discovered by the proposed study tasks, more active tunable magnetic field phononics devices could be designed and exemplified in terms of both simulations and experiments. Faster and more controllable active phononic devices could …
Date: December 2021
Creator: Jin, Yuqi
System: The UNT Digital Library

Real Time Gas Monitoring and Modeling on the Pyrolysis Process of Biomass

In order to better understand the changes occurring in the internal environment of the pyrolysis process a method of monitoring the internal environment in real time is the key objective of this study. To accomplish this objective four tasks were laid out in order to develop an effective way of monitoring the changes in gases present as pyrolysis is occurring as well as in material activation processing. For all processing the self-activation process was used which combines pyrolysis and thermal activation into a single step process. In the first task 10 hard wood species were activated and the resulting properties were compared to see the impact of wood species on the resulting carbon structures. In order to understand the impact of gas concentration on the resulting carbons the second task developed a gas sensor array which effectiveness was corroborated using GC-MS and then comparisons of the changes in the resulting were made. For the third task the gas sensor array was used to analyze the production of CO2 gas and a triple Gaussian model was developed to model the changes in gas production throughout processing. H2 gas production was modeled in the fourth task using the same Gaussian model as …
Date: December 2021
Creator: Smith, Lee Miller
System: The UNT Digital Library

Aerodynamic Optimization of a 2D Airfoil for Rotary-Wing Aircraft at Mars Atmospheric Conditions

The interest toward Mars exploration has been considerably increasing due to also the successful deployment of the Perseverance rover and the continuous tests developed by SpaceX's launch vehicle, Starship. While the Mars 2020 mission is currently in progress, the first controlled flight on another planet have been proven in April 2021 with the vertical take-off and landing of the Ingenuity rotorcraft on Mars. In addition, the rotorcraft Dragonfly is expected to achieve the same endeavor in Titan, the largest moon of Saturn, by 2036. Continuous efforts have been oriented toward the development of new technologies and aircraft configurations to improve the performance of current proposed designs to achieve powered flight in different planetary bodies. This thesis work is a preliminary study to develop a comprehensive analysis over the generation of optimum airfoil geometries to achieve vertical flight in environments where low Reynolds numbers and Mach number equal to 0.2 and 0.5.
Date: December 2021
Creator: Saez, Aleandro G.
System: The UNT Digital Library

3D Printing of Zinc Anode for Zinc Ion Batteries

Recently, 3D printing has received increasing attention for the fabrication and assembly of electrodes for batteries due to the freedom of creating structures in any shape or size, porosity, flexibility, stretchability, and chemistry. Particularly, zinc ion batteries (ZIBs) are favored due to high safety, cheap materials cost, and high volumetric capacity (5,849 mAh/cm3), however, rapid evaporation of Zn due to low melting temperature has limited its 3D printability via conventional laser-based additive manufacturing technique. Here, we develop a printable ink for the fabrication of flexible and 3D printed Zn anode with varied surface areas using the direct ink writing (DIW) method. Our 3D printed porous and high surface area Zn anode structures effectively suppressed the dendrite growth while providing high Zn ion diffusion towards the cathode to significantly enhance the performance of ZIB. By varying filament distancing and path, we 3D printed zinc anode structures with different active surface areas, surface area to volume ratio, porosity, flexible and multiple layer structures that can be incorporated on any device. Carbon in the composite improved conductivity, and mechanical stability of 3D printed zinc anode. Our 3D printed composite anodes allowed flexible designing of batteries surpassing conventional battery designs such as coin cells …
Date: December 2021
Creator: Amoko, Stephen Adot Oyo
System: The UNT Digital Library
Optimization of Silica Nanocomposite Membranes for Air Dehumidification (open access)

Optimization of Silica Nanocomposite Membranes for Air Dehumidification

This thesis is focused on understanding the correct method to simulate atomistic models to calculate coefficient of diffusion of water through the membrane. It also aims to fix the method previously used in molecular modelling in which the simulation results did not match the experimental results. These membranes will be used in air dehumidification systems. The four types of membranes namely, polyurethane, polyurethane with silica nano particles, polyurethane with silica nano particles and amine surface modifier, and polyurethane with silica nano particles and aniline surface modifier. These membranes were also simulated to understand the effects of temperatures and pressure using molecular dynamics. The software packages used are MAPS 4.3, Avogadro, EMC, OVITO, and LAMMPS. MAPS, Avogadro and EMC were used to model the membrane at an atomistic level while LAMMPS is used to simulate the model generated. OVITO is used to analyze the simulation visually. The movement of water vapor molecules were tracked through the membrane in the simulation and diffusion coefficient was calculated using Mean square displacement equation. To create a realistic model, silica was dispersed in the Polyurethane matrix, simulated under standard atmospheric conditions. These results will help in further optimizing the membrane for air dehumidification. This will …
Date: May 2022
Creator: Appaji, Tejas
System: The UNT Digital Library
Multi-Fidelity Study of Aerodynamics and Aeroacoustics Characteristics of a Quadrotor Biplane Tailsitter (open access)

Multi-Fidelity Study of Aerodynamics and Aeroacoustics Characteristics of a Quadrotor Biplane Tailsitter

Recent advances in manufacturing and growing concerns on the sustainability of aviation environment have led to a remarkable interest in electrical unmanned aerial systems (UASs) in the past decade. Among various UAS types, the newly designed quadrotor biplane tailsitter class is capable of delivering a wide range of civilian and military tasks, relying on its Vertical Take-Off and Landing (VTOL) capability as well as great maneuverability. Nevertheless, as such UASs employ rotors to generate thrust, and wings to generate lift, and operate at less-understood low to mid-Reynolds flow regime, they experience complicated flight aerodynamics with a noise generation mechanism which is different from common aircrafts. The present work aims at addressing this knowledge gap by studying the aerodynamics and aeroacoustics of a UAS of this type designed by the Army Research Lab. High-fidelity computational fluid dynamics (CFD) simulations are carried out for a wide range of operating conditions to understand the physics involved in the UAS aerodynamics and characterize its performance. Relying on the CFD results, a physics-informed reduced order model (ROM) is developed based on machine learning algorithms, to predict the propellers effects on the wings and calculate the dominant loads. The results of this study indicate that the …
Date: May 2022
Creator: Heydari, Morteza
System: The UNT Digital Library
Gradient-Index Metamaterial Infrared Detector for Enhanced Photo-Response and Image Quality (open access)

Gradient-Index Metamaterial Infrared Detector for Enhanced Photo-Response and Image Quality

An enhanced thermal imaging concept made possible through the development of a gradient-indexed metamaterial infrared detector that offers broadband transmission and reflection in THz waves. This thesis proposes a proof of feasibility for a metamaterial infrared detector containing an anti-reflective coating with various geometrically varying periodic metasurfaces, a gradient-indexed dielectric multilayer for near-perfect longpass filtering, and a gradient index of refraction (GRIN) metalens for enhanced focal plane thermal imaging. 2D Rigorous Coupled-Wave Analysis (RCWA) is used for understanding the photonic gratings performance based on material selection and varying geometric structure. Finite Difference Time Domain (FDTD) is used to characterize performance for a diffractive metalens by optimizing the radius and arrangement of cylindrical nanorods to create a desired phase profile that can achieve a desired focal distance for projections on a detector for near- to far-infrared thermal imaging. Through combining a micromachined anti-reflective coating, a near-perfect longpass filter, and metamaterial GRIN metalens, infrared/THz focal plane thermal imaging can obtain faster photo-response and image quality at targeted wavelengths, which allows for scientific advancements in electro-optical devices for the Department of Defense, aerospace, and biochemical detection applications.
Date: May 2022
Creator: Adams, Kelsa Derek
System: The UNT Digital Library

CFD Study of Ship Hydrodynamics in Calm Water with Shear Current and in Designed Wave Trails

Although the capability of computational fluid dynamics (CFD) in modeling ship hydrodynamics is well explored in many studies, they still have two main limitations. First, those studies ignore the effect of non-uniform shear current which exists in realistic situation. Second, the focus of most studies was laid more on the seakeeping/maneuvering performance and less attention was paid to survivability of ships due to extreme ship response events in waves, which are considered rare events but influential. In this thesis, we explore the capability of CFD in those two areas. In the first part of the thesis, the hydrodynamic performance of KCS in the presence of a non-uniform shear current is investigated for the first time using high-fidelity CFD simulations. Various shear current conditions with different directions were considered and results were compared with the ones with no shear current. The second part of the thesis focuses on study of rare events of ship responses by development of extreme response conditioning techniques to design the wave trail. Two conditioned techniques based on Gaussian and non-Gaussian processes are considered.
Date: May 2022
Creator: Phan, Khang Minh
System: The UNT Digital Library
Impact of Processing Parameters and Forces on Channels Created by Friction Stir Bobbin Tools (open access)

Impact of Processing Parameters and Forces on Channels Created by Friction Stir Bobbin Tools

In this thesis, friction stir channeling (FSC) and its process parameters influence on geometry, surface quality and productivity are explored. The probe of the friction stir processing (FSP) tool used to perform these tests was a modified submerged bobbin tool made of MP 159 Co-Ni alloy. The body was made from H13 tool steel. To find the optimal channel conditions for a targeted range of process parameters, multiple 6061 aluminum samples were prepared with a U shape guide to test the effects of different spindle speeds and feed rates. Using a gantry-type computer numerical control (CNC) friction stir welding (FSW) machine, the aluminum coupons were subjected to calibration experiments, force control tests, and an increased production rate to test these effects. It was found through experimentation that the programmed feed rates, spindle speeds and forces produced by the machine had an impact on the channel geometry. It was determined from the force-controlled setup that 8.46 mm/s at 750 RPM was the best combination of results for the four conditions tested on a CNC friction stir processing-machine. It was then tested at 10.58 mm/s at 800 RPM, which had comparable results with the best combination of input parameters from the force-controlled …
Date: May 2022
Creator: Koonce, James G
System: The UNT Digital Library