Language

Assessing Student Perceptions in Short Research Experiences and Course Research Experiences in Undergraduate Biology Laboratories (open access)

Assessing Student Perceptions in Short Research Experiences and Course Research Experiences in Undergraduate Biology Laboratories

This study examined students' perception between short research experiences (SRE) courses and full-semester course research experiences (CRE) using the Persistence in the Sciences (PITS) survey and the interview questionnaire. The study also aimed to correlate the influence of student's demographic as a predictive indicator for Project Ownership Scores (POS) and Quantitative Literacy (QL) score means. The three courses studied at the University of North Texas were Biology for Science Majors Laboratory (BIOL 1760 SRE), Microbiology with Tiny Earth (BIOL 2042 Tiny Earth SRE), and Introductory Biology Research Laboratory I (BIOL 1750 SEA-PHAGES CRE). The mean scores for the PITS categories leaned favorably towards the research component of each laboratory course assessed in this study. The interview questionnaire showed 66% of the students in the SRE courses and 90% of the students in the CRE course preferred the research component of the lab. Paired survey demographic analysis for BIOL 1760 SRE showed significance for the Science Community Values with associate/bachelor's degree. BIOL 1750 SEA-PHAGES CRE showed significance in three of the six categories when comparing means for Project Ownership Emotion, Self-Efficacy, and Science Identity with Gender. Binary logistics was used to build a regression model to predict demographics with approximately 65% …
Date: August 2022
Creator: Alberts, Arland Dulcey
Object Type: Thesis or Dissertation
System: The UNT Digital Library

A Sensitive and Robust Machine Learning-Based Framework for Deciphering Antimicrobial Resistance

Antibiotics have transformed modern medicine in manifold ways. However, the misuse and over-consumption of antibiotics or antimicrobials have led to the rise in antimicrobial resistance (AMR). Unfortunately, robust tools or techniques for the detection of potential loci responsible for AMR before it happens are lacking. The emergence of resistance even when a strain lacks known AMR genes has puzzled researchers for a long time. Clearly, there is a critical need for the development of novel approaches for uncovering yet unknown resistance elements in pathogens and advancing our understanding of emerging resistance mechanisms. To aid in the development of new tools for deciphering AMR, here we propose a machine learning (ML) based framework that provides ML models trained and tested on (1) genotypic AMR and phenotypic antimicrobial susceptibility testing (AST) data, which can predict novel resistance factors in bacterial strains that lack already implicated resistance genes; and (2) complete gene set and AST phenotypic data, which can predict the most important genetic loci involved in resistance to specific antibiotics in bacterial strains. The validation of resistance loci prioritized by our ML pipeline was performed using homology modeling and in silico molecular docking.
Date: August 2022
Creator: Sunuwar, Janak
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Neurotoxic Effects of Polycyclic Aromatic Hydrocarbons in Vertebrates, from Behavioral to Cellular Levels

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental toxicants found in anthropogenic mixtures such as crude oil, air pollution, vehicle exhaust, and in some natural combustion reactions. Single PAHs such as benzo[a]pyrene (BaP) also impact fish behavior when animals are exposed in early life stages and for short periods of time. Aquatic animals such as fish may encounter BaP through road runoff and oil spills, but few studies have examined the impact of aqueous exposure on adult fish, and fewer have examined the resulting fitness-relevant behavioral consequences of BaP and PAH mixtures and their long-term persistence. This dissertation targets this gap in the literature by examining how aqueous exposure to BaP influences anxiety-like behavior, learning, and memory in adult zebrafish, and how parental exposure to the PAH mixture, crude oil, combined with hypoxia affects social and exploratory behavior in unexposed larval zebrafish. We found that learning and memory were not affected by 24 hour exposure to BaP, that anxiety-like behavior was minimally affected, and that locomotor parameters such as distance moved and times spent in darting and immobile states were significantly altered by exposure to BaP. Additionally, we found that parental exposure to crude oil and hypoxia decreased larval velocity. Additionally, …
Date: July 2023
Creator: Dunton, Alicia D.
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Linkage of the Nitrilase-Encoding Nit1C Gene Cluster to Cyanotrophy in Acinetobacter haemolyticus

The Nit1C cluster is a conserved gene cluster of seven genes that confers bacterial growth on cyanide as the sole nitrogen source. Bacteria with this ability are referred to as cyanotrophs. To date, the linkage between Nit1C and cyanotrophy has only been demonstrated for environmental isolates but the cluster also exists in certain medically related bacteria. In this study, a nosocomial isolate, Acinetobacter haemolyticus ATCC 19194, carrying Nit1C also displayed the ability to grow on cyanide. Growth on cyanide was accompanied by the induction of the cluster as was the mere exposure of cells to cyanide. Expression of the cluster was determined by measuring the activity of the nitrilase (NitC) coded for by the cluster and by transcriptional analysis (qRT-PCR). However, a disconnect between nitC message and NitC protein was observed depending on the phase of the growth cycle, the disconnect being related to proteolytic digestion of the NitC protein. Ironically, the cluster was also discovered to be upregulated in the absence of cyanide under nitrogen starvation conditions paralleling biofilm formation. The basis of the genetic linkage to cyanotrophy is not understood but taken together with results showing that nitrogen starvation and biofilm formation are also physiologically associated with Nit1C …
Date: July 2023
Creator: Dale, Layla Momo
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Air Breathing Fish: Development of Air Breathing in Bristlenose Plecos (Ancistrus cirrhosus) (open access)

Air Breathing Fish: Development of Air Breathing in Bristlenose Plecos (Ancistrus cirrhosus)

The bristlenose pleco (Ancistrus cirrhosus) is a species of armored catfish in the Loricariidae family that breathes air facultatively when the aquatic environment becomes hypoxic. The bristlenose pleco uses its highly vascularized stomach as an air breathing organ. The two main goals of this developmental study were to determine the size of onset of air breathing and to determine the frequency of air breathing behavior in bristlenose plecos from juveniles to adults. Developing juveniles reach functional maturity within four to six months of hatching and grow to an adult size of eight to ten cm in length. To examine the developmental timing for the onset of air breathing, we tested different sized juveniles beginning at one cm up until 8 cm in length. The developmental timing for the onset of air breathing was measured by exposing each fish to a slowly decreasing aquatic oxygen content from 100% air saturation down to 8% air saturation. Fish were first able to breathe air at just over 2 cm and 1 gram in mass. There was a weak negative correlation between fish length and % air saturation at which air breathing began. When exposed to 15% air saturation, frequency of air breathing was …
Date: July 2023
Creator: Crowder, Lauren Whitney
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Role of MicroRNAs and Their Downstream Targets in Zebrafish Thrombopoiesis

Previous studies have shown that human platelets and megakaryocytes carry microRNAs suggesting their role in platelet function and megakaryocyte development, respectively. However, there is limited information on microRNAs' role in zebrafish thrombopoiesis. Zebrafish thrombocytes could be used as a model to study their role in megakaryocyte maturation and platelet function because thrombocytes have both megakaryocyte features and platelet properties. In our laboratory, I identified 15 microRNAs in thrombocytes using single-cell RNA sequencing. Knockdown of three microRNAs, mir-7148, let-7b, and mir-223, by the piggyback method in zebrafish led to an increase in the percentage of thrombocytes. Functional thrombocyte analysis using plate tilt assay showed no modulatory effect of the three microRNAs on thrombocyte aggregation/agglutination. I then verified these findings in zebrafish larvae after the knockdown of the above microRNAs followed by an arterial laser thrombosis assay. I concluded mir-7148, let-7b, and mir-223 are repressors for thrombocyte production. Furthermore, I explored let-7b downstream genes in thrombocytes detected by RNA-seq analysis and chose 14 targets based on their role in cell differentiation (rorca, tgif1, rfx1a, deaf1, zbtb18, mafba, cebpa, spi1a, spi1b, fhl3b, ikzf1, irf5, irf8, and lbx1b) that are transcriptional regulators. The qRT-PCR analysis of expression levels the above genes following let-7b knockdown …
Date: May 2023
Creator: Al Qaryoute, Ayah
Object Type: Thesis or Dissertation
System: The UNT Digital Library

The Impact of Invasive Salmonids on Ecosystem Functioning in South America's Sub-Antarctic Inland and Marine Waters

Invasions from coho salmon were first reported in the Cape Horn Biosphere Reserve (CHBR) in 2019 which is the most southern distribution registered to date. The CHBR is known for its high number of endemic species and unique biodiversity, such as the native fishes Galaxias maculatus and Aplochiton taeniatus. There are now three invasive salmonid species in the rivers of CHBR and are a potential threat to the native fish taxa. Stable isotope and gut content analysis were used to understand resource utilization by both native galaxiid and invasive salmonid taxa, as well as aquatic macroinvertebrates and riparian spiders. The natural laboratory study approach applied to this research, allowed for comparisons of differences within streams that contain conditions in which fish do not occur naturally, to sites in which high densities of invasive salmonid exist. Analysis of the trophic niche and diet in this study showed the importance of marine resource use by the native galaxiid and coho salmon juveniles supported with elevated δ15N and δ34S ratios. Diet analysis also confirmed there was the highest similarity between the coho salmon juveniles and the native fish. Altered behavior and habitat use was shown through the isotope and diet analysis for the …
Date: May 2023
Creator: Moore, Sabrina
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Hypoxia-Induced Cardiac Arrest Alters Central Nervous System Concentrations of the GLYT2 Glycine Transporter in Zebrafish (Danio rerio) (open access)

Hypoxia-Induced Cardiac Arrest Alters Central Nervous System Concentrations of the GLYT2 Glycine Transporter in Zebrafish (Danio rerio)

Hypoxia as a stressor has physiological implications that have been a focal point for many physiological studies in recent years. In some studies, hypoxia had large effects on the organ tissue degeneration, which ultimately effects multiple ecological processes. These organ tissue studies played a part in the development of new fields like neurocardiology, a specialty that studied the relationship between the brain and the heart. This thesis focuses on how hypoxia-induced cardiac arrest alters the amounts of GLYT2, a glycine reuptake transporter, in the central nervous system of zebrafish, Danio rerio. At 7 days post-fertilization (dpf), zebrafish were exposed to acute, severe hypoxia until they lost equilibrium, and minutes later, subsequent cardiac arrest occurred. Zebrafish were then placed into recovery groups to measure the GLYT2 levels at multiple points in zebrafish recovery. Fish were then sacrificed, and their brains dissected. Using immunofluorescence, the outer left optic tectum of the zebrafish was imaged, and mean image pixel fluorescent intensity was taken. There were significant changes (one-way ANOVA) in the levels of GLYT2 compared to that of the control groups during the course of recovery. GLYT2 levels continued to rise through the 24-hour recovery mark but did not show significant difference after …
Date: July 2023
Creator: Auzenne, Alexis
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Form and Function of the Vertebrate and Invertebrate Blood-Brain Barriers (open access)

Form and Function of the Vertebrate and Invertebrate Blood-Brain Barriers

Article reviewing blood-brain barriers (BBBs) in their various forms in both invertebrates and vertebrates, with an emphasis on the function, evolution, and conditional relevance of popular animal models such as the fruit fly and the zebrafish to mammalian BBB research.
Date: November 9, 2021
Creator: Dunton, Alicia D.; Göpel, Torben; Ho, Dao H. & Burggren, Warren W.
Object Type: Article
System: The UNT Digital Library
Heterogeneous Distribution of Erucic Acid in Brassica napus Seeds (open access)

Heterogeneous Distribution of Erucic Acid in Brassica napus Seeds

Article describes study examining low- and high-erucic acid accessions of B. napus seeds for the distribution of erucic acid-containing lipids and the gene transcripts encoding the enzymes involved in pathways for its incorporation into triacylglycerols (TAGs) across the major tissues of the seeds.
Date: January 29, 2020
Creator: Lu, Shaoping; Aziz, Mina; Sturtevant, Drew; Chapman, Kent Dean & Guo, Liang
Object Type: Article
System: The UNT Digital Library
Conservation, Connectivity, and Coexistence: Understanding Corridor Efficacy in Fragmented Landscapes (open access)

Conservation, Connectivity, and Coexistence: Understanding Corridor Efficacy in Fragmented Landscapes

Conservation corridors, areas of land connecting patches of natural land cover, are frequently cited and implemented as a restorative strategy to counteract fragmentation. Current corridor ecology focuses on experimental corridor systems or designed and built conservation corridors to assess functionality. Such systems and designs are typically short, straight swaths of homogenous land cover with unambiguous transitions between patches. Quantifying the degree to which amorphous landscape configurations, tortuosity, and heterogeneity of land cover and land uses within the corridor has on functional connectedness is a crucial yet overlooked component of corridor efficacy studies. Corridor literature lacks a robust and repeatable methodology for delineating existing landscape elements, recognizing arbitrary edges, and identifying the start and end of ambiguous transitions between the patches and corridor. Using a set of landscapes being studied as part of a global assessment of corridor efficacy, I designed a workflow that standardizes the boundary of corridor-patch interfaces. The proposed method is a quantitative and repeatable approach that minimizes the subjectivity in corridor delineations. This research investigates the degree to which the existence of a corridor modifies the structural and functional connectivity between patches connected by a corridor compared to an intact reference area.
Date: May 2023
Creator: Long, Amanda M.
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Greater, Lesser, Guessers: A Look into the Hybridization of Greater and Lesser Prairie-Chickens (open access)

Greater, Lesser, Guessers: A Look into the Hybridization of Greater and Lesser Prairie-Chickens

My thesis focuses on the conservation consequences of the hybridization of Lesser Prairie-Chickens in Kansas. Specifically, examining how past land management practices altering the species ranges impact the distinctiveness of Lesser Prairie-Chickens. Each chapter is an individual publication that addresses if the Greater and Lesser Prairie-Chicken are distinct when applying the morphological and biological species concepts. Chapter 2 compares the evolutionary history and morphological construct of Lesser Prairie-Chickens and other Galliformes using morphometric analysis. Chapter 3 uses low-resolution microsatellite data to reflect recent changes at the population level. This study aims to observe the Greater and Lesser Prairie-Chicken using the morphological and biological species concepts, two of the many species concepts, to determine the distinctiveness and rate of hybridization for these closely related species.
Date: May 2023
Creator: Stein, Carleigh M.
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Combined Effects of Polycyclic Aromatic Hydrocarbons and Ultraviolet Light on Benthic and Pelagic Macroinvertebrates

Crude oil commonly enters freshwater aquatic ecosystems as thin sheens forming on the water surface. Oil contains mixtures of toxic compounds called polycyclic aromatic hydrocarbons (PAHs), some of which are known to be photodynamic, increasing toxicity when combined with ultraviolet radiation. Benthic macroinvertebrate communities are commonly utilized as bioindicators, and as such rely on abundant data in literature concerning benthic macroinvertebrates' relative tolerances to a wide range of pollutants. A series of 10 plastic traps, half of which were filtered from UV radiation, were deployed in an urban pond for 27 days to determine colonization preferences of benthic macroinvertebrates to UV exposure. Results of this in situ experiment indicated that the majority of aquatic insects collected from traps inhabited the UV exposed treatment group, particularly the nonbiting midge, Chironomidae. A series of bioassays were then completed to investigate the sensitivities of a Chironomidae species to thin sheens of crude oil in the presence and absence of UV radiation. All bioassays were conducted using 10 day old Chironomus dilutus larvae cultured in the lab. The series of C. dilutus bioassays were all conducted under the same water quality parameters, temperatures, and oil sheen dosing methods, under a 16:8 photoperiod and exposed …
Date: May 2023
Creator: Chapman, Abigail L.
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Anti-S2 Peptides and Antibodies Binding Effect on Myosin S2 and Anti-S2 Peptide's Ability to Reach the Cardiomyocytes in vivo and Interfere in Muscle Contraction (open access)

Anti-S2 Peptides and Antibodies Binding Effect on Myosin S2 and Anti-S2 Peptide's Ability to Reach the Cardiomyocytes in vivo and Interfere in Muscle Contraction

The anti-S2 peptides, the stabilizer and destabilizer, were designed to target myosin sub-fragment 2 (S2) in muscle. When the peptides are coupled to a heart-targeting molecule, they can reach the cardiomyocytes and interfere with cardiac muscle contraction. Monoclonal antibodies, MF20 and MF30, are also known to interact with light meromyosin and S2 respectively. The MF30 antibody compared to anti-S2 peptides and the MF20 antibody is used as a control to test the central hypothesis that: Both the anti-S2 peptides and antibodies bind to myosin S2 with high affinity, compete with MyBPC, and possibly interact with titin, in which case the anti-S2 peptides have further impact on myosin helicity and reach the heart with the aid of tannic acid to modulate cardiomyocytes' contraction in live mice. In this research, the effects of anti-S2 peptides and antibodies on myosin S2 were studied at the molecular and tissue levels. The anti-myosin binding mechanism to whole myosin was determined based on total internal reflectance fluorescence spectroscopy (TIRFS), and a modified cuvette was utilized to accommodate this experiment. The binding graphs indicated the cooperative binding of the peptides and antibodies with high affinity to myosin. Anti-myosin peptides and antibodies competition with Myosin Binding Protein C …
Date: July 2023
Creator: Quedan, Duaa Mohamad Alhaj Mahmoud
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Detection and Classification of Cancer and Other Noncommunicable Diseases Using Neural Network Models (open access)

Detection and Classification of Cancer and Other Noncommunicable Diseases Using Neural Network Models

Here, we show that training with multiple noncommunicable diseases (NCDs) is both feasible and beneficial to modeling this class of diseases. We first use data from the Cancer Genome Atlas (TCGA) to train a pan cancer model, and then characterize the information the model has learned about the cancers. In doing this we show that the model has learned concepts that are relevant to the task of cancer classification. We also test the model on datasets derived independently of the TCGA cohort and show that the model is robust to data outside of its training distribution such as precancerous legions and metastatic samples. We then utilize the cancer model as the basis of a transfer learning study where we retrain it on other, non-cancer NCDs. In doing so we show that NCDs with very differing underlying biology contain extractible information relevant to each other allowing for a broader model of NCDs to be developed with existing datasets. We then test the importance of the samples source tissue in the model and find that the NCD class and tissue source may not be independent in our model. To address this, we use the tissue encodings to create augmented samples. We test …
Date: July 2023
Creator: Gore, Steven Lee
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Crucial Development: Criticality Is Important to Cell-to-Cell Communication and Information Transfer in Living Systems (open access)

Crucial Development: Criticality Is Important to Cell-to-Cell Communication and Information Transfer in Living Systems

This article is the fourth paper of the Special Issue Memory and Criticality. It bridges the the theoretical debate on the role of memory and criticality discussed in the three earlier manuscripts, with a review of key concepts in biology and focus on cell-to-cell communication in organismal development. The authors suggest that in conjunction with morphogenetic gradients, there exist gradients of information transfer creating cybernetic loops of stability and disorder, setting the stage for adaptive capability. Criticality, therefore, appears to be an important factor in the transmission, transfer and coding of information for complex adaptive system development.
Date: August 31, 2021
Creator: Hunt von Herbing, Ione; Tonello, Lucio; Benfatto, Maurizio; Pease, April & Grigolini, Paolo
Object Type: Article
System: The UNT Digital Library
Editorial: Microbial C1 Metabolism and Biotechnology (open access)

Editorial: Microbial C1 Metabolism and Biotechnology

This article is an editorial on the research topic Microbial C1 Metabolism and Biotechnology. This special topic presents studies focused on the fundamental aspects of C1 metabolism in diverse microbial systems with the ability to convert anthropogenic greenhouse gases into valuable products.
Date: August 27, 2021
Creator: Xiong, Wei; Kalyuzhnaya, Marina G. & Henard, Calvin
Object Type: Article
System: The UNT Digital Library
Ecological Responses to Severe Flooding in Coastal Ecosystems: Determining the Vegetation Response to Hurricane Harvey within a Texas Coast Salt Marsh (open access)

Ecological Responses to Severe Flooding in Coastal Ecosystems: Determining the Vegetation Response to Hurricane Harvey within a Texas Coast Salt Marsh

Vegetative health was measured both before and after Hurricane Harvey using remotely sensed vegetation indices on the coastal marshland surrounding Galveston Island's West Bay. Data were recorded on a monthly basis following the hurricane from September of 2005 until September of 2019 in order to document the vegetation response to this significant disturbance event. Both initial impact and recovery were found to be dependent on a variety of factors, including elevation zone, spatial proximity to the bay, the season during which recovery took place, as well as the amount of time since the hurricane. Slope was also tested as a potential variable using a LiDAR-derived slope raster, and while unable to significantly explain variations in vegetative health immediately following the hurricane, it was able to explain some degree of variability among spatially close data points. Among environmental factors, elevation zone appeared to be the most key in determining the degree of vegetation impact, suggesting that the different plant assemblages that make up different portions of the marsh react differently to the severe flooding that took place during Harvey.
Date: August 2021
Creator: Hudman, Kenneth Russell
Object Type: Thesis or Dissertation
System: The UNT Digital Library
The Development of Potential Therapeutic Anti-Myosin S2 Peptides that Modulate Contraction and Append to the Heart Homing Adduct Tannic Acid without Noticeable Effect on Their Functions (open access)

The Development of Potential Therapeutic Anti-Myosin S2 Peptides that Modulate Contraction and Append to the Heart Homing Adduct Tannic Acid without Noticeable Effect on Their Functions

This dissertation aimed to explore the S2 region with an attempt to modulate its elasticity in order to tune the contraction output. Two peptides, the stabilizer and destabilizer, showed high potential in modifying the S2 region at the cellular level, thus they were prepared for animal model testing. In this research, (i) S2 elasticity was studied, and the stabilizer and destabilizer peptides were built to tune contraction output through modulating S2 flexibility; (ii) the peptides were attached to heart homing adducts and the bond between them was confirmed; and (iii) it was shown that minor changes were imposed on the modulating peptides' functionality upon attaching to the heart homing adducts. S2 flexibility was confirmed through comparing it to other parts of myosin using simulated force spectroscopy. Modulatory peptides were built and computationally tested for their efficacy through interaction energy measurement, simulated force spectroscopy and molecular dynamics; these were attached to heart homing adducts for heart delivery. Interaction energy tests determined that tannic acid (TA) served well for this purpose. The stoichiometry of the bond between the TA and the modulating peptides was confirmed using mass spectroscopy. The functionality of the modulating peptides was shown to be unaltered through expansion microscopy …
Date: May 2021
Creator: Qadan, Motamed
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Studies on the Fibrinolytic Pathway in Zebrafish

Fibrinolysis pathway is an important mechanism for dissolution of fibrin clot by the action of plasmin which is formed from plasminogen, a zymogen via the action of plasminogen activators, i.e. tissue plasminogen activator and urinary plasminogen activator. The regulation of fibrinolysis system in vivo is maintained by plasminogen activators and natural inhibitors i.e. α2-antiplasmin, α2-macroglobulin, Thrombin-activatable fibrinolysis inhibitor (TAFI) and plasminogen activator inhibitor 1 and 2 (PAI-1and PAI-2). There are several fibrinolytic assays developed for human plasma but there are no reports describing fibrinolytic assay using zebrafish plasma. In this study, a fibrinolytic assay via using small amount of zebrafish plasma was developed. This assay was performed under different conditions; one by the addition of exogenous tissue plasminogen activator alone to the pooled zebrafish plasma along with calcium chloride and thromboplastin, second Dade ACTIN was used instead of tissue plasminogen activator and third Dade ACTIN along with thromboplastin was used. Epsilon amino caproic acid (EACA), a synthetic antifibrinolytic agent was used at different concentrations to inhibit fibrinolysis successfully. Similar experiments were performed on human plasma as well to check the applicability of the assay to humans and positive results were obtained. Furthermore, knockdown of tissue plasminogen activator and plasminogen genes …
Date: August 2021
Creator: Gill, Jaspreet Kaur
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Role of 5.8S rRNA in Zebrafish and Human Blood Coagulation (open access)

Role of 5.8S rRNA in Zebrafish and Human Blood Coagulation

Hemolytic disorders are characterized by hemolysis and are prone to thrombosis. Previously, it has been shown that the RNA released from damaged blood cells activates clotting. However, the nature of RNA released from hemolysis is still elusive. We found that after hemolysis, the red blood cells from both zebrafish and humans release 5.8S rRNA. This RNA activated coagulation in zebrafish and human plasmas. Using both natural and synthetic 5.8S rRNA and its synthetic truncated fragments, we found that the 3'-end 26 nucleotide-long RNA (3'-26 RNA) and its stem-loop secondary structure were necessary and sufficient for clotting activity. Corn trypsin inhibitor (CTI), a coagulation factor XII (FXII) inhibitor blocked 3'-26 RNA-mediated coagulation activation of both zebrafish and human plasma. CTI also inhibited zebrafish coagulation in vivo. 5.8S rRNA monoclonal antibody inhibited both 5.8S rRNA- and 3'-26 RNA-mediated zebrafish coagulation activity. Both 5.8S rRNA and 3'-26 RNA activates normal human plasma but did not activate FXII-deficient human plasma. Taken together, these results suggested that the activation of zebrafish plasma is via FXII-like protein. Since zebrafish has no FXII and hepatocyte growth factor activator (Hgfac) has sequence similarities to FXII, we knocked down the hgfac in adult zebrafish. We found that plasma from …
Date: December 2020
Creator: Alharbi, Abdulmajeed Haya M.
Object Type: Thesis or Dissertation
System: The UNT Digital Library

The Consequences of Early Life Stage Thyroid Suppression on Immune Function in the Fathead Minnow (Pimephales promelas)

Current evidence suggests that thyroid hormones (THs) may impact development of the immune system. However, studies that explore the role of THs in immune development are limited, and the mechanisms leading to alterations in immune function are poorly understood. It is important to elucidate the role of THs in immune development given that many environmental contaminants have been shown to disrupt TH homeostasis and may also have negative impacts on the immune system. As such, the main goal of this study was to determine the long-term consequences of early life stage (ELS) hypothyroidism on immune function. To achieve this goal, it was first necessary to further characterize basic immune function in the selected model species, the fathead minnow (FHM, Pimephales promelas). Preliminary studies were conducted to describe the transcriptomic response to Yersinia ruckeri and adapt assays for the assessment of respiratory burst and phagocytic cell activity. To determine the long-term effects of ELS hypothyroidism, FHMs were exposed to the model thyroid suppressant propylthiouracil (PTU) from <1 to 30 days post hatch and reared under normal conditions. Upon reaching adulthood, ex vivo immune cell function and the in vivo immune response to Y. ruckeri were assessed. Fish exposed to PTU experienced …
Date: May 2020
Creator: Thornton Hampton, Leah Marie
Object Type: Thesis or Dissertation
System: The UNT Digital Library
The Effects of Probiotics on Growth, and Metabolism in Juvenile Oreochromis mossambicus (Mozambique Tilapia) (open access)

The Effects of Probiotics on Growth, and Metabolism in Juvenile Oreochromis mossambicus (Mozambique Tilapia)

Improving growth, lowering mortality rates, and having a faster turnaround to harvest is essential for the future of commercial aquaculture. The primary goal of this study was to determine if introducing a single strain probiotic Lactobacillus rhamnosus IMC 501 into the feed regimen of a commercially important aquaculture freshwater fish, Mozambique tilapia (Oreochromis mossambicus), would decrease mortality; change metabolic rates; and increase tissue wet mass (MW), standard length, growth rate and feed conversion rate (FCRs). IMC501 was added to the fishmeal in four increasing concentrations and compared to a control without probiotics. Results from two-way ANOVAs showed that both treatment levels and elapsed time had a significant effect on both mean standard length and wet mass; in the latter case, time points and treatments interacted with one another, showing that tilapia grew best with a moderate level of probiotics present. The growth benefits of probiotics continued for months after the initial treatments. Oxygen consumption (metabolic rate) was measured using closed respirometry and resulted in recording the first values for juvenile tilapia treated with probiotics. For oxygen consumption, there were significant treatment and time effects with significant interactions, indicating that metabolism increased with probiotics once the dosage exceeded three times the …
Date: May 2020
Creator: Anderson, Michael Earl
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Novel Approaches for Enhancing Resistance to Fusarium graminearum in Arabidopsis and Wheat by Targeting Defense and Pathogenicity Factors

Fusarium head blight (FHB) is an important disease of small grain cereals including wheat that affects grain quality and yield. The fungus Fusarium graminearum (Fg) is the major agent of this disease. Lack of natural resistance has limited ability to control wheat losses to this disease. Developing new approaches is critical for increasing host plant resistance to this fungus. This work has identified four processes that can be targeted for enhancing host plant resistance to FHB. The first involves targeting the pattern-triggered immunity mechanism to promote host plant resistance. Two other approaches involved reducing activity of susceptibility factors in the host to enhance plant resistance. The susceptibility factors targeted include accumulation of the phytohormone jasmonic acid and the 9-lipoxygenase pathway that oxidizes fatty acids. Besides suppressing host defenses against Fg, jasmonic acid also directly acts on the fungus to promote fungal growth. 9- lipoxygenases similarly suppress host defenses to promote fungal pathogenicity. Another approach that was developed involved having the plant express double stranded RNA to target fungal virulence genes for silencing. This host-induced gene silencing approach was employed to target two fungal virulence genes, the lipase encoding FGL1 and salicylate hydroxylase encoding FgNahG, which the fungus secretes into the …
Date: May 2020
Creator: Alam, Syeda Tamanna
Object Type: Thesis or Dissertation
System: The UNT Digital Library