Renewal and Memory Approaches to Study Biological and Physiological Processes (open access)

Renewal and Memory Approaches to Study Biological and Physiological Processes

In nature we find many instances of complex behavior for example the dynamics of stock markets, power grids, internet networks, highway traffic, social networks, heartbeat dynamics, neural dynamics, dynamics of living organisms, etc. The study of these complex systems involves the use of tools of non-linear dynamics and non-equilibrium statistical physics. This dissertation is devoted to understanding two different sources of complex behavior – non-poissonian renewal events also called crucial events and infinite memory of fractional Brownian motion. They both generate 1/f noise frequency spectrum. Thus, we studied examples of both processes and also their joint action. We also tried to establish the role of crucial events in biological and physiological processes like biophoton emission during the germination of seeds, the dynamics of heartbeat and neural dynamics. Using a statistical method of analyzing the time series of bio signals we were able to quantify the complexity associated with the underlying dynamics of these processes. Finally, we adopted a model that unifies both crucial events and memory fluctuations to study the rhythmic behavior observed in heart rate variability of people during meditation. We were able to also quantify the level of stress reduction during meditation. The work presented in this dissertation …
Date: May 2019
Creator: Tuladhar, Rohisha
System: The UNT Digital Library
Electrically Tunable Absorption and Perfect Absorption Using Aluminum-Doped Zinc Oxide and Graphene Sandwiched in Oxides (open access)

Electrically Tunable Absorption and Perfect Absorption Using Aluminum-Doped Zinc Oxide and Graphene Sandwiched in Oxides

Understanding the fundamental physics in light absorption and perfect light absorption is vital for device applications in detector, sensor, solar energy harvesting and imaging. In this research study, a large area fabrication of Al-doped ZnO/Al2O3/graphene/Al2O3/gold/silicon device was enabled by a spin-processable hydrophilic mono-layer graphene oxide. In contrast to the optical properties of noble metals, which cannot be tuned or changed, the permittivity of transparent metal oxides, such as Al-doped ZnO and indium tin oxide, are tunable. Their optical properties can be adjusted via doping or tuned electrically through carrier accumulation and depletion, providing great advantages for designing tunable photonic devices or realizing perfect absorption. A significant shift of Raman frequency up to 360 cm-1 was observed from graphene in the fabricated device reported in this work. The absorption from the device was tunable with a negative voltage applied on the Al-doped ZnO side. The generated absorption change was sustainable when the voltage was off and erasable when a positive voltage was applied. The reflection change was explained by the Fermi level change in graphene. The sustainability of tuned optical property in graphene can lead to a design of device with less power consumption.
Date: December 2018
Creator: Adewole, Murthada Oladele
System: The UNT Digital Library
Exploring Growth Kinematics and Tuning Optical and Electronic Properties of Indium Antimonide Nanowires (open access)

Exploring Growth Kinematics and Tuning Optical and Electronic Properties of Indium Antimonide Nanowires

This dissertation work is a study of the growth kinematics, synthesis strategies and intrinsic properties of InSb nanowires (NWs). The highlights of this work include a study of the effect of the growth parameters on the composition and crystallinity of NWs. A change in the temperature ramp-up rate as the substrate was heated to reach the NW growth temperature resulted in NWs that were either crystalline or amorphous. The as-grown NWs were found to have very different optical and electrical properties. The growth mechanism for crystalline NWs is the standard vapor-liquid-solid growth mechanism. This work proposes two possible growth mechanisms for amorphous NWs. The amorphous InSb NWs were found to be very sensitive to laser radiation and to heat treatment. Raman spectroscopy measurements on these NWs showed that intense laser light induced localized crystallization, most likely due to radiation induced annealing of defects in the region hit by the laser beam. Electron transport measurements revealed non-linear current-voltage characteristics that could not be explained by a Schottky diode behavior. Analysis of the experimental data showed that electrical conduction in this material is governed by space charge limited current (SCLC) in the high bias-field region and by Ohm's law in the low …
Date: December 2018
Creator: Algarni, Zaina Sluman
System: The UNT Digital Library
Fabrication and Study of the Optical Properties of 3D Photonic Crystals and 2D Graded Photonic Super-Crystals (open access)

Fabrication and Study of the Optical Properties of 3D Photonic Crystals and 2D Graded Photonic Super-Crystals

In this dissertation, I am presenting my research on the fabrication and simulation of the optical properties of 3D photonic crystals and 2D graded photonic super-crystals. The 3D photonic crystals were fabricated using holographic lithography with a single, custom-built reflective optical element (ROE) and single exposure from a visible light laser. Fully 3D photonic crystals with 4-fold, 5- fold, and 6-fold symmetries were fabricated using the flexible, 3D printed ROE. In addition, novel 2D graded photonic super-crystals were fabricated using a spatial light modulator (SLM) in a 4f setup for pixel-by-pixel phase engineering. The SLM was used to control the phase and intensity of sets of beams to fabricate the 2D photonic crystals in a single exposure. The 2D photonic crystals integrate super-cell periodicities with 4-fold, 5-fold, and 6-fold symmetries and a graded fill fraction. The simulations of the 2D graded photonic super-crystals show extraordinary properties such as full photonic band gaps and cavity modes with Q-factors of ~106. This research could help in the development of organic light emitting diodes, high-efficiency solar cells, and other devices.
Date: December 2018
Creator: Lowell, David
System: The UNT Digital Library
Physical Boundary as a Source of Anomalies in Transport Processes in Acoustics and Electrodynamics (open access)

Physical Boundary as a Source of Anomalies in Transport Processes in Acoustics and Electrodynamics

Various anomalous effects that emerge when the interfaces between media are involved in sound-matter or light-matter interactions are studied. The three specific systems examined are a fluid channel between elastic metal plates, a linear chain of metallic perforated cylindrical shells in air, and a metal-dielectric slab with the interfaces treated as finite regions of smoothly changing material properties. The scattering of acoustic signals on the first two is predicted to be accompanied by the effects of redirection and splitting of sound. In the third system, which supports the propagation of surface plasmons, it is discovered that the transition region introduces a nonradiative decay mechanism which adds to the plasmon dissipation. The analytical results are supported with numerical simulations. The outlined phenomena provide the ideas and implications for applications involving manipulation of sound or excitation of surface plasmons.
Date: December 2018
Creator: Bozhko, Andrii
System: The UNT Digital Library
Quantum Coherence Effects Coupled via Plasmons (open access)

Quantum Coherence Effects Coupled via Plasmons

This thesis is an attempt at studying quantum coherence effects coupled via plasmons. After introducing the quantum coherence in atomic systems in Chapter 1, we utilize it in Chapter 2 to demonstrate a new technique of detection of motion of single atoms or irons inside an optical cavity. By taking into account the interaction of coherences with surface plasmonic waves excited in metal nanoparticles, we provide a theoretical model along with experimental data in Chapter 3 to describe the modification of Raman spectra near metal nanoparticles. We show in chapter 4 that starting from two emitters, coupled via a plasmonic field, the symmetry breaking occurs, making detectable the simultaneous existence of the fast super-radiance and the slow sub-radiance emission of dye fluorescence near a plasmonic surface. In Chapter 5, we study the photon statistics of a group of emitters coupled via plasmons and by the use of quantum regression theorem, we provide a theoretical model to fully investigate the dependence of photon bunching and anti-bunching effects to the interaction between atoms, fields and surrounding mediums.
Date: December 2018
Creator: Moazzezi, Mojtaba
System: The UNT Digital Library
Application of Statistical Physics in Human Physiology: Heart-Brain Dynamics (open access)

Application of Statistical Physics in Human Physiology: Heart-Brain Dynamics

This dissertation is devoted to study of complex systems in human physiology particularly heartbeats and brain dynamics. We have studied the dynamics of heartbeats that has been a subject of investigation of two independent groups. The first group emphasized the multifractal nature of the heartbeat dynamics of healthy subjects, whereas the second group had established a close connection between healthy subjects and the occurrence of crucial events. We have analyzed the same set of data and established that in fact the heartbeats are characterized by the occurrence of crucial and Poisson events. An increase in the percentage of crucial events makes the multifractal spectrum broader, thereby bridging the results of the former group with the results of the latter group. The crucial events are characterized by a power index that signals the occurrence of 1/f noise for complex systems in the best physiological condition. These results led us to focus our analysis on the statistical properties of crucial events. We have adopted the same statistical analysis to study the statistical properties of the heartbeat dynamics of subjects practicing meditation. The heartbeats of people doing meditation are known to produce coherent fluctuations. In addition to this effect, we made the surprising …
Date: August 2018
Creator: Bohara, Gyanendra
System: The UNT Digital Library
Emergence of Cooperation and Homeodynamics as a Result of Self Organized Temporal Criticality: From Biology to Physics (open access)

Emergence of Cooperation and Homeodynamics as a Result of Self Organized Temporal Criticality: From Biology to Physics

This dissertation is an attempt at establishing a bridge between biology and physics leading naturally from the field of phase transitions in physics to the cooperative nature of living systems. We show that this aim can be realized by supplementing the current field of evolutionary game theory with a new form of self-organized temporal criticality. In the case of ordinary criticality, the units of a system choosing either cooperation or defection under the influence of the choices done by their nearest neighbors, undergo a significant change of behavior when the intensity of social influence has a critical value. At criticality, the behavior of the individual units is correlated with that of all other units, in addition to the behavior of the nearest neighbors. The spontaneous transition to criticality of this work is realized as follows: the units change their behavior (defection or cooperation) under the social influence of their nearest neighbors and update the intensity of their social influence spontaneously by the feedback they get from the payoffs of the game (environment). If units, which are selfish, get higher benefit with respect to their previous play, they increase their interest to interact with other units and vice versa. Doing this, …
Date: August 2018
Creator: Mahmoodi, Korosh
System: The UNT Digital Library
Nanophotonics of Plasmonic and Two-Dimensional Metamaterials (open access)

Nanophotonics of Plasmonic and Two-Dimensional Metamaterials

Various nanostructured materials display unique and interesting optical properties. Specific nanoscale objects discussed in an experimental perspective in this dissertation include optical metamaterials, surface plasmon sensors, and two-dimensional materials. These nanoscale objects were fabricated, investigated optically, and their applications are assessed. First, one-dimensional magnetic gratings were studied, followed by their two-dimensional analog, the so-called "fishnet." Both were fabricated, characterized, and their properties, such as waveguiding modes, are examined. Interestingly, these devices can exhibit optical magnetism and even negative refraction; however, their general characterization at oblique incidence is challenging due to diffraction. Here, a new method of optical characterization of metamaterials which takes into account diffraction is presented. Next, surface plasmon resonance (SPR) was experimentally used in two schemes, for the first time, to determine the transition layer characteristics between a metal and dielectric. The physics of interfaces, namely the singularity of electric permittivity and how it can be electrically shifted, becomes clearer owing to the extreme sensitivity of SPR detection mechanisms. Finally, ultra-thin two-dimensional semiconducting materials had their radiative lifetime analyzed. Their lifetimes are tuned both by number of atomic layers and applied voltage biasing across the surface, and the changes in lifetime are suspected to be due to quenching …
Date: August 2018
Creator: Roccapriore, Kevin M
System: The UNT Digital Library
Artificially Structured Boundary for Control and Confinement of Beams and Plasmas (open access)

Artificially Structured Boundary for Control and Confinement of Beams and Plasmas

An artificially structured boundary (ASB) produces a short-range, static electromagnetic field that can reflect charged particles. In the work presented, an ASB is considered to consist of a spatially periodic arrangement of electrostatically plugged magnetic cusps. When used to create an enclosed volume, an ASB may confine a non-neutral plasma that is effectively free of applied electromagnetic fields, provided the spatial period of the ASB-applied field is much smaller than any one dimension of the confinement volume. As envisioned, a non-neutral positron plasma could be confined by an ASB along its edge, and the space-charge of the positron plasma would serve to confine an antiproton plasma. If the conditions of the two-species plasma are suitable, production of antihydrogen via three-body recombination for antimatter gravity studies may be possible. A classical trajectory Monte Carlo (CTMC) simulation suite has been developed in C++ to efficiently simulate charged particle interactions with user defined electromagnetic fields. The code has been used to explore several ASB configurations, and a concept for a cylindrically symmetric ASB trap that employs a picket-fence magnetic field has been developed. Particle-in-cell (PIC) modeling has been utilized to investigate the confinement of non-neutral and partially neutralized positron plasmas in the trap.
Date: May 2018
Creator: Hedlof, Ryan
System: The UNT Digital Library
Examination of Magnetic Plasma Expulsion (open access)

Examination of Magnetic Plasma Expulsion

Magnetic plasma expulsion uses a magnetic field distortion to redirect incident charged particles around a certain area for the purposes of shielding. Computational studies are carried out and for certain values of magnetic field, magnetic plasma expulsion is found to effectively shield a sizable area. There are however many plasma behaviors and interactions that must be considered. Applications to a new cryogenic antimatter trap design are discussed.
Date: May 2018
Creator: Phillips, Ryan Edward
System: The UNT Digital Library
Core-Shell Based Metamaterials: Fabrication Protocol and Optical Properties (open access)

Core-Shell Based Metamaterials: Fabrication Protocol and Optical Properties

The objective of this study is to examine core-shell type plasmonic metamaterials aimed at the development of materials with unique electromagnetic properties. The building blocks of metamaterials under study consist of gold as a metal component, and silica and precipitated calcium carbonate (PCC) as the dielectric media. The results of this study demonstrate important applications of the core-shells including scattering suppression, airborne obscurants made of fractal gold shells, photomodification of the fractal structure providing windows of transparency, and plasmonics core-shell with a gain shell as an active device. Plasmonic resonances of the metallic shells depend on their nanostructure and geometry of the core, which can be optimized for the broadband extinction. Significant extinction from the visible to mid-infrared makes fractal shells very attractive as bandpass filters and aerosolized obscurants. In contrast to the planar fractal films, where the absorption and reflection equally contribute to the extinction, the shells' extinction is caused mainly by the absorption. This work shows that the Mie scattering resonance of a silica core with 780 nm diameter at 560 nm is suppressed by 75% and only partially substituted by the absorption in the shell so that the total transmission is noticeably increased. Effective medium theory supports …
Date: December 2017
Creator: De Silva, Vashista C
System: The UNT Digital Library
Design, Construction, and Application of an Electrostatic Quadrupole Doublet for Heavy Ion Nuclear Microprobe Research (open access)

Design, Construction, and Application of an Electrostatic Quadrupole Doublet for Heavy Ion Nuclear Microprobe Research

A nuclear microprobe, typically consisting of 2 - 4 quadrupole magnetic lenses and apertures serving as objective and a collimating divergence slits, focuses MeV ions to approximately 1 x 1 μm for modification and analysis of materials. Although far less utilized, electrostatic quadrupole fields similarly afford strong focusing of ions and have the added benefit of doing so independent of ion mass. Instead, electrostatic quadrupole focusing exhibits energy dependence on focusing ions. A heavy ion microprobe could extend the spatial resolution of conventional microprobe techniques to masses untenable by quadrupole magnetic fields. An electrostatic quadrupole doublet focusing system has been designed and constructed using several non-conventional methods and materials for a wide range of microprobe applications. The system was modeled using the software package "Propagate Rays and Aberrations by Matrices" which quantifies system specific parameters such as demagnification and intrinsic aberrations. Direct experimental verification was obtained for several of the parameters associated with the system. Details of the project and with specific applications of the system are presented.
Date: December 2017
Creator: Manuel, Jack Elliot
System: The UNT Digital Library
Dynamic Screening via Intense Laser Radiation and Its Effects on Bulk and Surface Plasma Dispersion Relations (open access)

Dynamic Screening via Intense Laser Radiation and Its Effects on Bulk and Surface Plasma Dispersion Relations

Recent experimentation with excitation of surface plasmons on a gold film in the Kretschmann configuration have shown what appears to be a superconductive effect. Researchers claimed to see the existence of electron pairing during scattering as well as magnetic field repulsion while twisting the polarization of the laser. In an attempt to explain this, they pointed to a combination of electron-electron scattering in external fields as well as dynamic screening via intense laser radiation. This paper expands upon the latter, taking a look at the properties of a dynamic polarization function, its effects on bulk and surface plasmon dispersion relations, and its various consequences.
Date: August 2017
Creator: Lanier, Steven t
System: The UNT Digital Library
Fabrication of Photonic Crystal Templates through Holographic Lithography and Study of their Optical and Plasmonic Properties in Aluminium Doped Zinc Oxide (open access)

Fabrication of Photonic Crystal Templates through Holographic Lithography and Study of their Optical and Plasmonic Properties in Aluminium Doped Zinc Oxide

This dissertation focuses on two aspects of integrating near-infrared plasmonics with electronics with the intent of developing the platform for future photonics. The first aspect focuses on fabrication by introducing and developing a simple, single reflective optical element capable of high–throughput, large scale fabrication of micro- and nano-sized structure templates using holographic lithography. This reflective optical element is then utilized to show proof of concept in fabricating three dimensional structures in negative photoresists as well as tuning subwavelength features in two dimensional compound lattices for the fabrication of dimer and trimer antenna templates. The second aspect focuses on the study of aluminum zinc oxide (AZO), which belongs to recently popularized material class of transparent conducting oxides, capable of tunable plasmonic capabilities in the near-IR regime. Holographic lithography is used to pattern an AZO film with a square lattice array that are shown to form standing wave resonances at the interface of the AZO and the substrate. To demonstrate device level integration the final experiment utilizes AZO patterned gratings and measures the variation of diffraction efficiency as a negative bias is applied to change the AZO optical properties. Additionally efforts to understand the behavior of these structures through optical measurements is …
Date: August 2017
Creator: George, David Ray
System: The UNT Digital Library
Interacting complex systems: theory and application to real-world situations (open access)

Interacting complex systems: theory and application to real-world situations

The interest in complex systems has increased exponentially during the past years because it was found helpful in addressing many of today's challenges. The study of the brain, biology, earthquakes, markets and social sciences are only a few examples of the fields that have benefited from the investigation of complex systems. Internet, the increased mobility of people and the raising energy demand are among the factors that brought in contact complex systems that were isolated till a few years ago. A theory for the interaction between complex systems is becoming more and more urgent to help mankind in this transition. The present work builds upon the most recent results in this field by solving a theoretical problem that prevented previous work to be applied to important complex systems, like the brain. It also shows preliminary laboratory results of perturbation of in vitro neural networks that were done to test the theory. Finally, it gives a preview of the studies that are being done to create a theory that is even closer to the interaction between real complex systems.
Date: August 2017
Creator: Piccinini, Nicola
System: The UNT Digital Library
Nonlinear Light Generation from Optical Cavities and Antennae (open access)

Nonlinear Light Generation from Optical Cavities and Antennae

Semiconductor based micro- and nano-structures grown in a systematic and controlled way using selective area growth are emerging as a promising route toward devices for integrated optical circuitry in optoelectronics and photonics field. This dissertation focuses on the experimental investigation of the nonlinear optical effects in selectively grown gallium nitride micro-pyramids that act as optical cavities, zinc oxide submicron rods and indium gallium nitride multiple quantum well core shell submicron tubes on the apex of GaN micro pyramids that act as optical antennae. Localized spatial excitation of these low dimensional semiconductor structures was optimized for nonlinear optical light (NLO) generation due to second harmonic generation (SHG) and multi-photon luminescence (MPL). The evolution of both processes are mapped along the symmetric axis of the individual structures for multiple fundamental input frequencies of light. Effects such as cavity formation of generated light, electron-hole plasma generation and coherent emission are observed. The efficiency and tunability of the frequency conversion that can be achieved in the individual structures of various geometries are estimated. By controlling the local excitation cross-section within the structures along with modulation of optical excitation intensity, the nonlinear optical process generated in these structures can be manipulated to generate coherent light …
Date: May 2017
Creator: Butler, Sween J.
System: The UNT Digital Library
Ion Beam Synthesis of Binary and Ternary Transition Metal Silicide Thin Films (open access)

Ion Beam Synthesis of Binary and Ternary Transition Metal Silicide Thin Films

Among the well-known methods to form or modify the composition and physical properties of thin films, ion implantation has shown to be a very powerful technique. In particular, ion beam syntheses of binary iron silicide have been studied by several groups. Further, the interests in transition metal silicide systems are triggered by their potential use in advanced silicon based opto-electronic devices. In addition, ternary silicides have been by far less studied than their binary counterparts despite the fact that they have interesting magnetic and electronic properties. In this study, we investigate ion beam synthesis of Fe-Si binary structures and Fe-Co-Si ternary structures. This work involves fundamental investigation into development of a scalable synthesis process involving binary and ternary transitional metal silicide thin films and Nano-structures using low energy ion beams. Binary structures were synthesized by implanting Fe- at 50 keV energy. Since ion implantation is a dynamic process, Dynamic simulation techniques were used in these studies to determine saturation fluences for ion implantation. Also, static and dynamic simulation results were compared with experimental results. The outcome of simulations and experimental results indicate, dynamic simulation codes are more suitable than static version of the TRIM to simulate high fluence, low energy …
Date: December 2016
Creator: Lakshantha, Wickramaarachchige Jayampath
System: The UNT Digital Library
Local Phase Manipulation for Multi-Beam Interference Lithography for the Fabrication of Two and Three Dimensional Photonic Crystal Templates (open access)

Local Phase Manipulation for Multi-Beam Interference Lithography for the Fabrication of Two and Three Dimensional Photonic Crystal Templates

In this work, we study the use of a spatial light modulator (SLM) for local manipulation of phase in interfering laser beams to fabricate photonic crystal templates with embedded, engineered defects. A SLM displaying geometric phase patterns was used as a digitally programmable phase mask to fabricate 4-fold and 6-fold symmetric photonic crystal templates. Through pixel-by-pixel phase engineering, digital control of the phases of one or more of the interfering beams was demonstrated, thus allowing change in the interference pattern. The phases of the generated beams were programmed at specific locations, resulting in defect structures in the fabricated photonic lattices such as missing lattice line defects, and single-motif lattice defects in dual-motif lattice background. The diffraction efficiency from the phase pattern was used to locally modify the filling fraction in holographically fabricated structures, resulting in defects with a different fill fraction than the bulk lattice. Through two steps of phase engineering, a spatially variant lattice defect with a 90° bend in a periodic bulk lattice was fabricated. Finally, by reducing the relative phase shift of the defect line and utilizing the different diffraction efficiency between the defect line and the background phase pattern, desired and functional defect lattices can be …
Date: December 2016
Creator: Lutkenhaus, Jeffrey Ryan
System: The UNT Digital Library
Low-Energy Electron Irradiation of Preheated and Gas-Exposed Single-Wall Carbon Nanotubes (open access)

Low-Energy Electron Irradiation of Preheated and Gas-Exposed Single-Wall Carbon Nanotubes

We investigate the conditions under which electron irradiation of single-walled carbon nanotube (SWCNT) bundles with 2 keV electrons produces an increase in the Raman D peak. We find that an increase in the D peak does not occur when SWCNTs are preheated in situ at 600 C for 1 h in ultrahigh vacuum (UHV) before irradiation is performed. Exposing SWCNTs to air or other gases after preheating in UHV and before irradiation results in an increase in the D peak. Small diameter SWCNTs that are not preheated or preheated and exposed to air show a significant increase in the D and G bands after irradiation. X-ray photoelectron spectroscopy shows no chemical shifts in the C1s peak of SWCNTs that have been irradiated versus SWCNTs that have not been irradiated, suggesting that the increase in the D peak is not due to chemisorption of adsorbates on the nanotubes.
Date: December 2016
Creator: Ecton, Philip
System: The UNT Digital Library
Charged Particle Transport and Confinement Along Null Magnetic Curves and in Various Other Nonuniform Field Configurations for Applications in Antihydrogen Production (open access)

Charged Particle Transport and Confinement Along Null Magnetic Curves and in Various Other Nonuniform Field Configurations for Applications in Antihydrogen Production

Comparisons between measurements of the ground-state hyperfine structure and gravitational acceleration of hydrogen and antihydrogen could provide a test of fundamental physical theories such as CPT (charge conjugation, parity, time-reversal) and gravitational symmetries. Currently, antihydrogen traps are based on Malmberg-Penning traps. The number of antiprotons in Malmberg-Penning traps with sufficiently low energy to be suitable for trappable antihydrogen production may be reduced by the electrostatic space charge of the positrons and/or collisions among antiprotons. Alternative trap designs may be needed for future antihydrogen experiments. A computational tool is developed to simulate charged particle motion in customizable magnetic fields generated by combinations of current loops and current lines. The tool is used to examine charged particle confinement in two systems consisting of dual, levitated current loops. The loops are coaxial and arranged to produce a magnetic null curve. Conditions leading to confinement in the system are quantified and confinement modes near the null curve and encircling one or both loops are identified. Furthermore, the tool is used to examine and quantify charged particle motion parallel to the null curve in the large radius limit of the dual, levitated current loops. An alternative to new trap designs is to identify the effects …
Date: May 2016
Creator: Lane, Ryan A.
System: The UNT Digital Library
Quantum Coherent Control and Propagation in Lambda System (open access)

Quantum Coherent Control and Propagation in Lambda System

Strong coherence in quasi-resonant laser driven system interferes with effective relaxations, resulting in behaviors like, coherent population trapping and Electromagnetically induced transparency. The Raman system can optimize this utilizing excited coherence in the lambda system when exposed to counter- intuitive pump-stokes pulses. The phenomenon can result in complete population transfer between vibrational levels called Stimulated Raman adiabatic passage(STIRAP). STIRAP and CHIRAP have been studied with Gaussian and chirped pulses. The optical propagation effects in dense medium for these phenomenon is studied to calculate the limitations and induced coherences. Further, the effect of rotational levels has been investigated. The molecular vibrational coherence strongly depends on the effect of rotational levels. The change in coherence interaction for ro-vibrational levels are reported and explained. We have considered the effects on the phase of radiation related to rotational mechanical motion of quantum system by taking advantages in ultra strong dispersion medium provided by quantum coherence in lambda system. The enhanced Fizeau effect on a single atom is observed.
Date: May 2016
Creator: Singh, Pooja, 1983-
System: The UNT Digital Library
A Search for Periodic and Quasi-Periodic Patterns in Select Proxy Data with a Goal to Understanding Temperature Variation (open access)

A Search for Periodic and Quasi-Periodic Patterns in Select Proxy Data with a Goal to Understanding Temperature Variation

In this work over 200 temperature proxy data sets have been analyzed to determine if periodic and or quasi-periodic patterns exist in the data sets. References to the journal articles where data are recorded are provided. Chapter 1 serves an introduction to the problem of temperature determination in providing information on how various proxy data sources are derived. Examples are given of the techniques followed in producing proxy data that predict temperature for each method used. In chapter 2 temperature proxy data spanning the last 4000 years, from 2,000 BCE to 2,000 CE, are analyzed to determine if overarching patterns exist in proxy data sets. An average of over 100 proxy data sets was used to produce Figure 4. An overview of the data shows that several “peaks” can be identified. The data were then subjected to analysis using a series of frequency modulated cosine waves. This analysis led to a function that can be expressed by equation 3. The literature was examined to determine what mathematical models had been published to fit the experimental proxy data for temperature. A number of attempts have been made to fit data from limited data sets with some degree of success. Some other …
Date: May 2016
Creator: Otto, James (James Robert)
System: The UNT Digital Library
Fractional Calculus and Dynamic Approach to Complexity (open access)

Fractional Calculus and Dynamic Approach to Complexity

Fractional calculus enables the possibility of using real number powers or complex number powers of the differentiation operator. The fundamental connection between fractional calculus and subordination processes is explored and affords a physical interpretation for a fractional trajectory, that being an average over an ensemble of stochastic trajectories. With an ensemble average perspective, the explanation of the behavior of fractional chaotic systems changes dramatically. Before now what has been interpreted as intrinsic friction is actually a form of non-Markovian dissipation that automatically arises from adopting the fractional calculus, is shown to be a manifestation of decorrelations between trajectories. Nonlinear Langevin equation describes the mean field of a finite size complex network at criticality. Critical phenomena and temporal complexity are two very important issues of modern nonlinear dynamics and the link between them found by the author can significantly improve the understanding behavior of dynamical systems at criticality. The subject of temporal complexity addresses the challenging and especially helpful in addressing fundamental physical science issues beyond the limits of reductionism.
Date: December 2015
Creator: Beig, Mirza Tanweer Ahmad
System: The UNT Digital Library