Degree Level

Language

Design of a Polymeric Coating for Protecting Thermoelectric Materials from Sublimation and Oxidation (open access)

Design of a Polymeric Coating for Protecting Thermoelectric Materials from Sublimation and Oxidation

Thermoelectric (TE) devices can undergo degradation from reactions in corrosive environments and at higher operating temperatures by sublimation and oxidation. To prevent the degradation, we have applied two high temperature polymers (HTPs) as coatings for TE materials. Sintering temperatures were from 250°C to 400°C. We explain why dip coating is better technique in our study and had two potential HTPs for tests. By applying TGA (thermogravimetric analysis), we were able to figure out which HTPs have better thermal resistivity. Besides, TGA also help us to find proper curing cycles for HTPs. EDS and SEM results show that the coatings prevent oxidation and sublimation of TE materials. We also shorten HTP curing cycle time and lower the energy costs.
Date: August 2019
Creator: Chen, I Kang
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Fabrication of Large-Scale and Thickness-Modulated Two-Dimensional Transition Metal Dichalcogenides [2D TMDs] Nanolayers (open access)

Fabrication of Large-Scale and Thickness-Modulated Two-Dimensional Transition Metal Dichalcogenides [2D TMDs] Nanolayers

This thesis describes the fabrication and characterization of two-dimensional transition dichalcogenides (2D TMDs) nanolayers for various applications in electronic and opto-electronic devices applications. In Chapter 1, crystal and optical structure of TMDs materials are introduced. Many TMDs materials reveal three structure polytypes (1T, 2H, and 3R). The important electronic properties are determined by the crystal structure of TMDs; thus, the information of crystal structure is explained. In addition, the detailed information of photon vibration and optical band gap structure from single-layer to bulk TMDs materials are introduced in this chapter. In Chapter 2, detailed information of physical properties and synthesis techniques for molybdenum disulfide (MoS2), tungsten disulfide (WS2), and molybdenum ditelluride (MoTe2) nanolayers are explained. The three representative crystal structures are trigonal prismatic (hexagonal, H), octahedral (tetragonal, T), and distorted structure (Tʹ). At room temperature, the stable structure of MoS2 and WS2 is semiconducting 2H phase, and MoTe2 can reveal both 2H (semiconducting phase) and 1Tʹ (semi-metallic phase) phases determined by the existence of strains. In addition, the pros and cons of the synthesis techniques for nanolayers are discussed. In Chapter 3, the topic of synthesized large-scale MoS2, WS2, and MoTe2 films is considered. For MoS2 and WS2 films, the …
Date: May 2019
Creator: Park, Juhong
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Catalytic Activity Origin and Design Principles of Graphitic Carbon Nitride Electrocatalysts for Hydrogen Evolution (open access)

Catalytic Activity Origin and Design Principles of Graphitic Carbon Nitride Electrocatalysts for Hydrogen Evolution

This article provides a basic design principle of heteroatom-doped g-C3N4 as an efficient HER catalyst and a fundamental understanding of the HER mechanism.
Date: February 19, 2019
Creator: Zhu, Yonghao; Zhang, Detao; Gong, Lele; Zhang, Lipeng & Xia, Zhenhai
Object Type: Article
System: The UNT Digital Library