The Study of Comprehensive Reinforcement Mechanism of Hexagonal Boron Nitride on Concrete (open access)

The Study of Comprehensive Reinforcement Mechanism of Hexagonal Boron Nitride on Concrete

The addition of hexagonal boron nitride (h-BN) has introduced a comprehensive reinforcing effect to the mechanical and electrochemical properties of commercial concrete, including fiber reinforced concrete (FRC) and steel fiber reinforced concrete (SFRC). Although this has been proven effective and applicable, further investigation and study is still required to optimize the strengthen result which will involve the exfoliation of h-BN into single-layered nano sheet, improving the degree of dispersion and dispersion uniformity of h-BN into concrete matrix. There is currently no direct method to test the degree of dispersion of non-conductive particles, including h-BN, in concrete matrix, therefore it is necessary to obtain an analogous quantification method like SEM, etc. The reinforcing mechanism on concrete, including FRC and SFRC is now attracting a great number of interest thanks to the huge potential of application and vast demand across the world. This study briefly describes the reinforcing mechanism brought by h-BN. In this study, different samples under varied conditions were prepared according to the addition of h-BN and dispersant to build a parallel comparison. Characterization is mainly focused on their mechanical properties, corrosive performance and SEM analysis of the cross-section of post-failure samples.
Date: August 2015
Creator: He, Qinyue
System: The UNT Digital Library
Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting (open access)

Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting

There is a wide range of applications for 3D printing technology with an additive manufacturing such as aerospace, automotive, marine and oil/gas, medical, consumer, electronics, building construction, and many others. There have been many pros and cons for 3D additive manufacturing. Even though 3D printing technology has many advantages: freedom to design and innovate without penalties, rapid iteration through design permutations, excellence mass customization, elimination of tolling, green manufacturing, minimal material wastes, energy efficiency, an enablement of personalized manufacturing. 3D additive manufacturing still has many disadvantages: unexpected pre- and post-processing requirement, high-end manufacturing, low speed for mass production, high thermal residual stress, and poor surface finish and dimensional accuracy, and many others. Especially, the issues for 3D additive manufacturing are on high cost for process and equipment for high-end manufacturing, low speed for mass production, high thermal residual stress, and poor surface finish and dimensional accuracy. In particular, it is relatively challenging to produce casting products with lattice or honeycomb shapes having sophisticated geometries. In spite of the scalable potential of periodic cellular metals to structural applications, the manufacturing methods of I∙AM Casting have been not actively explored nor fully understood. A few qualitative studies of I∙AM Casting has been …
Date: December 2015
Creator: Mun, Jiwon
System: The UNT Digital Library
Direct Strength Method for Web Crippling of Cold-formed Steel C and Z Sections Subjected to Interior One Flange Loading and End One Flange Loading (open access)

Direct Strength Method for Web Crippling of Cold-formed Steel C and Z Sections Subjected to Interior One Flange Loading and End One Flange Loading

The main objective of this research is to extend the “Direct strength method” for determining the web crippling strength of cold-formed steel C and Z sections subjected to End one flange loading and Interior one flange loading conditions. Direct strength method is applied for designing the columns and beams earlier. The existing specifications equation for calculating the web crippling strength of cold-formed steels designed by American Institute of Iron and Steel is very old method and it is based on the extensive experimental investigations conducted at different universities. Calculating the web crippling strength of cold-formed steels using direct strength method is a new technique. In the present research the web crippling strength of cold-formed steels were calculated using Direct Strength Method. The experimental data is collected from the tests that were conducted at different universities. The critical buckling strength of the members were calculated using Abaqus. Microsoft excel is used to generate the equations. The safety and resistance factors for the designed equations were calculated using “Load and resistance factor design” and “Allowable strength design” from North American Cold-Formed Steel Specification, 2012 edition book.
Date: December 2015
Creator: Dara, Martin Luther
System: The UNT Digital Library
Evaluation of the Influence of Non-Conventional Sources of Emissions on Ambient Air Pollutant Concentrations in North Texas (open access)

Evaluation of the Influence of Non-Conventional Sources of Emissions on Ambient Air Pollutant Concentrations in North Texas

Emissions of air pollutants from non-conventional sources have been on the rise in the North Texas area over the past decade. These include primary pollutants such as volatile organic compound (VOC) and oxides of nitrogen (NOx) which also act as precursors in the formation of ozone. Most of these have been attributed to a significant increase in oil and gas production activities since 2000 within the Barnett Shale region adjacent to the Dallas-Fort Worth metroplex region. In this study, air quality concentrations measured at the Denton Airport and Dallas Hinton monitoring sites operated by the Texas Commission on Environmental Quality (TCEQ) were evaluated. VOC concentration data from canister-based sampling along with continuous measurement of oxides of nitrogen (NOx), ozone (O3), particulate matter (PM2.5), and meteorological conditions at these two sites spanning from 2000 through 2014 were employed in this study. The Dallas site is located within the urban core of one of the fastest growing cities in the United States, while the Denton site is an exurban site with rural characteristics to it. The Denton Airport site was influenced by natural gas pads surrounding it while there are very few natural gas production facilities within close proximity to the Dallas …
Date: August 2015
Creator: Lim, Guo Quan
System: The UNT Digital Library
Study of Metal Whiskers Growth and Mitigation Technique Using Additive Manufacturing (open access)

Study of Metal Whiskers Growth and Mitigation Technique Using Additive Manufacturing

For years, the alloy of choice for electroplating electronic components has been tin-lead (Sn-Pb) alloy. However, the legislation established in Europe on July 1, 2006, required significant lead (Pb) content reductions from electronic hardware due to its toxic nature. A popular alternative for coating electronic components is pure tin (Sn). However, pure tin has the tendency to spontaneously grow electrically conductive Sn whisker during storage. Sn whisker is usually a pure single crystal tin with filament or hair-like structures grown directly from the electroplated surfaces. Sn whisker is highly conductive, and can cause short circuits in electronic components, which is a very significant reliability problem. The damages caused by Sn whisker growth are reported in very critical applications such as aircraft, spacecraft, satellites, and military weapons systems. They are also naturally very strong and are believed to grow from compressive stresses developed in the Sn coating during deposition or over time. The new directive, even though environmentally friendly, has placed all lead-free electronic devices at risk because of whisker growth in pure tin. Additionally, interest has occurred about studying the nature of other metal whiskers such as zinc (Zn) whiskers and comparing their behavior to that of Sn whiskers. Zn …
Date: August 2015
Creator: Gullapalli, Vikranth
System: The UNT Digital Library
Preliminary Analysis of an Innovative Rotary Displacer Stirling Engine (open access)

Preliminary Analysis of an Innovative Rotary Displacer Stirling Engine

Stirling engines are an external combustion heat engine that converts thermal energy into mechanical work that a closed cycle is run by cyclic compression and expansion of a work fluid (commonly air or Helium) in which, the working fluid interacts with a heat source and a heat sink and produces network. The engine is based on the Stirling cycle which is a subset of the Carnot cycle. The Stirling cycle has recently been receiving renewed interest due to some of its key inherent advantages. In particular, the ability to operate with any form of heat source (including external combustion, flue gases, alternative (biomass, solar, geothermal) energy) provides Stirling engines a great flexibility and potential benefits since it is convinced as engines running with external heat sources. However, several aspects of traditional Stirling engine configurations (namely, the Alpha, Beta, and Gamma), specifically complexity of design, high cost, and relatively low power to size and power to volume ratios, limited their widespread applications to date. This study focuses on an innovative Stirling engine configuration that features a rotary displacer (as opposed to common reciprocating displacers), and aims to utilize analytical and numerical analysis to gain insights on its operation parameters. The results …
Date: December 2015
Creator: Bagheri, Amirhossein
System: The UNT Digital Library
Study of Mechanical Performance of Stent Implants Using Theoretical and Numerical Approach (open access)

Study of Mechanical Performance of Stent Implants Using Theoretical and Numerical Approach

The coronary heart disease kills more than 350,000 persons/year and it costs $108.9 billion for the United States each year, in spite of significant advancements in clinical care and education for public, cardiovascular diseases (CVD) are leading cause of death and disability to the nation. A cardiovascular disease involves mainly heart or blood vessels (arteries, veins and capillaries) or both, and then mainly occurs in selected regions and affects heart, brain, kidney and peripheral arteries. As a surgical interventions, stent implantation is deployed to cure or ameliorate the disease. However, the high failure rate of stents used in patients with peripheral artery diseases has lead researchers to give special attention towards analyzing stent structure and characteristics. In this research, the mechanical properties of a stent based on the rhombus structure were analyzed and verified by means of analytical and numerical approaches. Theoretical model based on the beam theory were developed and numerical models were used to analyze the response of these structures under various and complex loading conditions. Moreover, the analysis of the stent inflation involves a model with large deformations and large strains, nonlinear material properties need to be considered to accurately capture the deformation process. The maximum stress …
Date: August 2015
Creator: Yang, Hua, (Mechanical engineer)
System: The UNT Digital Library
Deleterious Synergistic Effects of Concurrent Magnetic Field and Superparamagnetic (Fe3O4) Nanoparticle Exposures on CHO-K1 Cell Line (open access)

Deleterious Synergistic Effects of Concurrent Magnetic Field and Superparamagnetic (Fe3O4) Nanoparticle Exposures on CHO-K1 Cell Line

While many investigations have been performed to establish a better understanding of the effects that magnetic fields and nanoparticles have on cells, the fundamental mechanisms behind the interactions are still yet unknown, and investigations on concurrent exposure are quite limited in scope. This study was therefore established to investigate the biological impact of concurrent exposure to magnetic nanoparticles and extremely-low frequency magnetic fields using an in-vitro CHO-K1 cell line model, in an easily reproducible manner to establish grounds for further in-depth mechanistic, proteomic, and genomic studies. Cells were cultured and exposed to 10nm Fe3O4 nanoparticles, and DC or low frequency (0Hz, 50Hz, and 100Hz) 2.0mT magnetic fields produced by a Helmholtz coil pair. The cells were then observed under confocal fluorescence microscopy, and subject to MTT biological assay to determine the synergistic effects of these concurrent exposures. No effects were observed on cell morphology or microtubule network; however, cell viability was observed to decrease more drastically under the combined effects of magnetic field and nanoparticle exposures, as compared to independent exposures alone. It was concluded that no significant difference was observed between the types of magnetic fields, and their effects on the nanoparticle exposed cells, but quite clearly there are …
Date: May 2015
Creator: Coker, Zachary
System: The UNT Digital Library
Estimation of Air Emissions During Production Phase from Active Oil and Gas Wells in the Barnett Shale Basin: 2010-2013 (open access)

Estimation of Air Emissions During Production Phase from Active Oil and Gas Wells in the Barnett Shale Basin: 2010-2013

The Barnett shale basin, the largest onshore gas field in the state of Texas, mainly produces natural gas. The basin’s oil and gas productions have dramatically increased over the past two decades with the enhancement via shale fracturing (fracking) technology. However, recent studies suggest that air emissions from shale fracking have significantly contributed to the growing air pollution problem in North Texas. In this study, air emissions from the Barnett shale basin during the production phase of the oil and gas activities (once the product is collected from the wells) are quantified. Oil and gas production data were acquired from the Texas Railroad Commission for the baseline years of 2010 through 2013. Methodology from prior studies on shale basins approved by the Texas Commission on Environmental Quality was employed in this study and the emission inventories from the production phase sources were quantified. Accordingly, the counties with the most gas operations in the basin, Tarrant, Johnson, Denton and Wise, were found to be the highest emitters of air pollutants. Tarrant County was responsible for the highest emitted NOx (42,566 tons) and CO (17,698 tons) in the basin, while Montague County released the maximum VOC emissions (87,601 tons) during the study …
Date: May 2015
Creator: Dohde, Farhan A.
System: The UNT Digital Library
Loading Mode Dependent Effective Properties of Octet-truss Lattice Structures Using 3D-Printing (open access)

Loading Mode Dependent Effective Properties of Octet-truss Lattice Structures Using 3D-Printing

Cellular materials, often called lattice materials, are increasingly receiving attention for their ultralight structures with high specific strength, excellent impact absorption, acoustic insulation, heat dissipation media and compact heat exchangers. In alignment with emerging additive manufacturing (AM) technology, realization of the structural applications of the lattice materials appears to be becoming faster. Considering the direction dependent material properties of the products with AM, by directionally dependent printing resolution, effective moduli of lattice structures appear to be directionally dependent. In this paper, a constitutive model of a lattice structure, which is an octet-truss with a base material having an orthotropic material property considering AM is developed. In a case study, polyjet based 3D printing material having an orthotropic property with a 9% difference in the principal direction provides difference in the axial and shear moduli in the octet-truss by 2.3 and 4.6%. Experimental validation for the effective properties of a 3D printed octet-truss is done for uniaxial tension and compression test. The theoretical value based on the micro-buckling of truss member are used to estimate the failure strength. Modulus value appears a little overestimate compared with the experiment. Finite element (FE) simulations for uniaxial compression and tension of octet-truss lattice materials …
Date: May 2015
Creator: Challapalli, Adithya
System: The UNT Digital Library
Application of Cyclic Polarization of Aluminum 3003 Used in All-Aluminum Microchannel Heat Exchangers (open access)

Application of Cyclic Polarization of Aluminum 3003 Used in All-Aluminum Microchannel Heat Exchangers

All-aluminum microchannel heat exchangers are designed to significantly reduce refrigerant charge requirements, weight, reduced brazed joints, and decreased potential for leakage by increasing reliability. Al 3003 alloy is corrosion resistant and can be formed, welded, and brazed but the issue with all-aluminum heat exchangers is localized corrosion (pitting) in corrosive environments. Currently, there is no universally accepted corrosion test that all coil manufacturers use to characterize their products. Electrochemical testing method of cyclic polarization was employed in this investigation and relevant parameters including electrolyte corrosive agent and its concentration, electrolyte pH, and applied potential scan rate was varied to find an optimal set of parameters. Results of cyclic polarization of Al 3003 in electrolytes containing various concentrations of NaCl were compared with those of the tests in Sea Water Acidified Accelerated Test (SWAAT) electrolyte and it is shown the SWAAT electrolyte (4.2% sea salt acidified to pH of 2.9) is by far stronger (in terms of corrosivity) than typical 3.5% NaCl solution used in most corrosion testing. Corrosion rates (g/m2yr) of Al 3003 measured in this investigation were comparable to those provided by ISO 9223 standard corresponding to C1 through CX categories. Duration of cyclic polarization test is much shorter …
Date: May 2015
Creator: Barnes, Javier
System: The UNT Digital Library