Time Lens Based Single-Shot Ultrafast Waveform Recording: From High Repetition Rate to High Dynamic Range (open access)

Time Lens Based Single-Shot Ultrafast Waveform Recording: From High Repetition Rate to High Dynamic Range

None
Date: July 22, 2011
Creator: Bennett, C. V.; Hernandez, V. J.; Moran, B. D.; Lowry, M. E.; Vernon, S. P.; Steele, P. T. et al.
Object Type: Article
System: The UNT Digital Library
A HIGH REPETITION PLASMA MIRROR FOR STAGED ELECTRON ACCELERATION (open access)

A HIGH REPETITION PLASMA MIRROR FOR STAGED ELECTRON ACCELERATION

In order to build a compact, staged laser plasma accelerator the in-coupling of the laser beam to the different stages represents one of the key issues. To limit the spatial foot print and thus to realize a high overall acceleration gradient, a concept has to be found which realizes this in-coupling within a few centimeters. We present experiments on a tape-drive based plasma mirror which could be used to reflect the focused laser beam into the acceleration stage.
Date: July 22, 2011
Creator: Sokollik, Thomas; Shiraishi, Satomi; Osterhoff, Jens; Evans, Eugene; Gonsalves, Anthony; Nakamura, Kei et al.
Object Type: Article
System: The UNT Digital Library
Discrete Dipole Approximation for Low-Energy Photoelectron Emission from NaCl Nanoparticles (open access)

Discrete Dipole Approximation for Low-Energy Photoelectron Emission from NaCl Nanoparticles

This work presents a model for the photoemission of electrons from sodium chloride nanoparticles 50-500 nm in size, illuminated by vacuum ultraviolet light with energy ranging from 9.4-10.9 eV. The discrete dipole approximation is used to calculate the electromagnetic field inside the particles, from which the two-dimensional angular distribution of emitted electrons is simulated. The emission is found to favor the particle?s geometrically illuminated side, and this asymmetry is compared to previous measurements performed at the Lawrence Berkeley National Laboratory. By modeling the nanoparticles as spheres, the Berkeley group is able to semi-quantitatively account for the observed asymmetry. Here however, the particles are modeled as cubes, which is closer to their actual shape, and the interaction of an emitted electron with the particle surface is also considered. The end result shows that the emission asymmetry for these low-energy electrons is more sensitive to the particle-surface interaction than to the specific particle shape, i.e., a sphere or cube.
Date: September 22, 2011
Creator: Berg, Matthew J.; Wilson, Kevin R.; Sorensen, Chris; Chakrabarti, Amit & Ahmed, Musahid
Object Type: Article
System: The UNT Digital Library
Validation of HADES-based Simulations of Radiographic Experiments at LLNL (open access)

Validation of HADES-based Simulations of Radiographic Experiments at LLNL

None
Date: June 22, 2011
Creator: Chen, H; Aufderheide, M; White, W T; Roberson, G P & Glascoe, L
Object Type: Article
System: The UNT Digital Library
Vessel network detection using contour evolution and color components (open access)

Vessel network detection using contour evolution and color components

Automated retinal screening relies on vasculature segmentation before the identification of other anatomical structures of the retina. Vasculature extraction can also be input to image quality ranking, neovascularization detection and image registration, among other applications. There is an extensive literature related to this problem, often excluding the inherent heterogeneity of ophthalmic clinical images. The contribution of this paper relies on an algorithm using front propagation to segment the vessel network. The algorithm includes a penalty in the wait queue on the fast marching heap to minimize leakage of the evolving interface. The method requires no manual labeling, a minimum number of parameters and it is capable of segmenting color ocular fundus images in real scenarios, where multi-ethnicity and brightness variations are parts of the problem.
Date: June 22, 2011
Creator: Ushizima, Daniela; Medeiros, Fatima; Cuadros, Jorge & Martins, Charles
Object Type: Article
System: The UNT Digital Library
Demonstration of a Plasma Mirror Based on a Laminar Flow Water Film (open access)

Demonstration of a Plasma Mirror Based on a Laminar Flow Water Film

A plasma mirror based on a laminar water film with low flow speed 0.5-2 cm/s has been developed and characterized, for use as an ultrahigh intensity optical reflector. The use of flowing water as atarget surface automatically results in each laser pulse seeing a new interaction surface and avoids the need for mechanical scanning of the target surface. In addition, the breakdown of water does notproduce contaminating debris that can be deleterious to vacuum chamber conditions and optics, such as is the case when using conventional solid targets. The mirror exhibits 70percent reflectivity, whilemaintaining high-quality of the reflected spot.
Date: July 22, 2011
Creator: Panasenko, Dmitriy; Shu, Anthony J.; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas H.; Toth, Csaba et al.
Object Type: Article
System: The UNT Digital Library
Tape-Drive Based Plasma Mirror (open access)

Tape-Drive Based Plasma Mirror

We present experimental results on a tape-drive based plasma mirror which could be used for a compact coupling of a laser beam into a staged laser driven electron accelerator. This novel kind of plasma mirror is suitable for high repetition rates and for high number of laser shots. In order to design a compact, staged laser plasma based accelerator or collider [1], the coupling of the laser beam into the different stages represents one of the key issues. To limit the spatial foot print and thus to realize a high overall acceleration gradient, a concept has to be found which realizes this in-coupling within a few centimeters (cf. Fig 1). The fluence of the laser pulse several centimeters away from the acceleration stage (focus) exceeds the damage threshold of any available mirror coating. Therefore, in reference [2] a plasma mirror was suggested for this purpose. We present experiments on a tape-drive based plasma mirror which could be used to reflect the focused laser beam into the acceleration stage. Plasma mirrors composed of antireflection coated glass substrates are usually used to improve the temporal laser contrast of laser pulses by several orders of magnitudes [3,4]. This is particularly important for laser …
Date: July 22, 2011
Creator: Sokollik, Thomas; Shiraishi, Satomi; Osterhoff, Jens; Evans, Eugene; Gonsalves, Anthony; Nakamura, Kei et al.
Object Type: Article
System: The UNT Digital Library
Investigation into Nanostructured Lanthanum Halides and CeBr{sub 3} for Nuclear Radiation Detection (open access)

Investigation into Nanostructured Lanthanum Halides and CeBr{sub 3} for Nuclear Radiation Detection

This slide-show presents work on radiation detection with nanostructured lanthanum halides and CeBr{sub 3}. The goal is to extend the gamma energy response on both low and high-energy regimes by demonstrating the ability to detect low-energy x-rays and relatively high-energy activation prompt gamma rays simultaneously using the nano-structured lanthanum bromide, lanthanum fluoride, cerium bromide, or other nanocrystal material. Homogeneous and nano structure cases are compared.
Date: June 22, 2011
Creator: Guss, P., Guise, R., Mukhopadhyay, S., Yuan, D.
Object Type: Article
System: The UNT Digital Library
Parallelizing Heavyweight Debugging Tools with MPIecho (open access)

Parallelizing Heavyweight Debugging Tools with MPIecho

None
Date: April 22, 2011
Creator: Rountree, B L; Cobb, G X; Gamblin, G T; Schulz, M W; de Supinski, B R & Tufo, H M
Object Type: Article
System: The UNT Digital Library
New Manufacturing Method for Paper filler and Fiber Material (open access)

New Manufacturing Method for Paper filler and Fiber Material

The study compares commercial available filler products with a new developed “Hybrid Fiber Filler Composite Material” and how main structural, optical and strength properties are affected by increasing the filler content of at least 5% over commercial values. The study consists of: (i) an overview of paper filler materials used in the paper production process, (ii) discusses the manufacturing technology of lime based filler materials for paper applications, (iii) gives an overview of new emerging paper filler technologies, (iv) discusses a filler evaluation of commercial available digital printing paper products, (v) reports from a detailed handsheet study and 12” pilot plant paper machine trial runs with the new Hybrid Fiber Filler Composite Material, and (vi) evaluates and compares commercial filler products and the new Hybrid Fiber Filler Composite Material with a life cycle analyses that explains manufacturing, economic and environmental benefits as they are applied to uncoated digital printing papers.
Date: November 22, 2011
Creator: Doelle, Klaus
Object Type: Article
System: The UNT Digital Library
Critical Infrastructure for Ocean Research and Societal Needs in 2030 (open access)

Critical Infrastructure for Ocean Research and Societal Needs in 2030

The United States has jurisdiction over 3.4 million square miles of ocean—an expanse greater than the land area of all fifty states combined. This vast marine area offers researchers opportunities to investigate the ocean’s role in an integrated Earth system, but also presents challenges to society, including damaging tsunamis and hurricanes, industrial accidents, and outbreaks of waterborne diseases. The 2010 Gulf of Mexico Deepwater Horizon oil spill and 2011 Japanese earthquake and tsunami are vivid reminders that a broad range of infrastructure is needed to advance our still-incomplete understanding of the ocean. The National Research Council (NRC)’s Ocean Studies Board was asked by the National Science and Technology Council’s Subcommittee on Ocean Science and Technology, comprised of 25 U.S. government agencies, to examine infrastructure needs for ocean research in the year 2030. This request reflects concern, among a myriad of marine issues, over the present state of aging and obsolete infrastructure, insufficient capacity, growing technological gaps, and declining national leadership in marine technological development; issues brought to the nation’s attention in 2004 by the U.S. Commission on Ocean Policy. A 15-member committee of experts identified four themes that encompass 32 future ocean research questions–enabling stewardship of the environment, protecting life …
Date: April 22, 2011
Creator: National Research Council
Object Type: Report
System: The UNT Digital Library
Widespread spin polarization effects in photoemission from topological insulators (open access)

Widespread spin polarization effects in photoemission from topological insulators

High-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi{sub 2}Se{sub 3} using a recently developed high-efficiency spectrometer. The topological surface state's helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations of photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.
Date: June 22, 2011
Creator: Jozwiak, C.; Chen, Y. L.; Fedorov, A. V.; Analytis, J. G.; Rotundu, C. R.; Schmid, A. K. et al.
Object Type: Article
System: The UNT Digital Library
BioPig: Developing Cloud Computing Applications for Next-Generation Sequence Analysis (open access)

BioPig: Developing Cloud Computing Applications for Next-Generation Sequence Analysis

Next Generation sequencing is producing ever larger data sizes with a growth rate outpacing Moore's Law. The data deluge has made many of the current sequenceanalysis tools obsolete because they do not scale with data. Here we present BioPig, a collection of cloud computing tools to scale data analysis and management. Pig is aflexible data scripting language that uses Apache's Hadoop data structure and map reduce framework to process very large data files in parallel and combine the results.BioPig extends Pig with capability with sequence analysis. We will show the performance of BioPig on a variety of bioinformatics tasks, including screeningsequence contaminants, Illumina QA/QC, and gene discovery from metagenome data sets using the Rumen metagenome as an example.
Date: March 22, 2011
Creator: Bhatia, Karan & Wang, Zhong
Object Type: Article
System: The UNT Digital Library
The Magnetoviscous-thermal Instability (open access)

The Magnetoviscous-thermal Instability

None
Date: June 22, 2011
Creator: Islam, T
Object Type: Article
System: The UNT Digital Library
A Lightweight, High-performance I/O Management Package for Data-intensive Computing (open access)

A Lightweight, High-performance I/O Management Package for Data-intensive Computing

Our group has been working with ANL collaborators on the topic “bridging the gap between parallel file system and local file system” during the course of this project period. We visited Argonne National Lab -- Dr. Robert Ross’s group for one week in the past summer 2007. We looked over our current project progress and planned the activities for the incoming years 2008-09. The PI met Dr. Robert Ross several times such as HEC FSIO workshop 08, SC’08 and SC’10. We explored the opportunities to develop a production system by leveraging our current prototype to (SOGP+PVFS) a new PVFS version. We delivered SOGP+PVFS codes to ANL PVFS2 group in 2008.We also talked about exploring a potential project on developing new parallel programming models and runtime systems for data-intensive scalable computing (DISC). The methodology is to evolve MPI towards DISC by incorporating some functions of Google MapReduce parallel programming model. More recently, we are together exploring how to leverage existing works to perform (1) coordination/aggregation of local I/O operations prior to movement over the WAN, (2) efficient bulk data movement over the WAN, (3) latency hiding techniques for latency-intensive operations. Since 2009, we start applying Hadoop/MapReduce to some HEC applications with …
Date: June 22, 2011
Creator: Wang, Jun
Object Type: Report
System: The UNT Digital Library
Doping of GaN{sub 1-x}As{sub x} with high As content (open access)

Doping of GaN{sub 1-x}As{sub x} with high As content

Recent work has shown that GaN{sub 1-x}As{sub x} can be grown across the entire composition range by low temperature molecular beam epitaxy with intermediate compositions being amorphous, but control of the electrical properties through doping is critical for functionalizing this material. Here we report the bipolar doping of GaN{sub 1-x}As{sub x} with high As content to conductivities above 4 S/cm at room temperature using Mg or Te. The carrier type was confirmed by thermopower measurements. Doping requires an increase in Ga flux during growth resulting in a mixed phase material of polycrystalline GaAs:N embedded in amorphous GaN{sub 1-x}As{sub x}.
Date: September 22, 2011
Creator: Levander, A.X.; Novikov, S.V.; Liliental-Weber, Z.; dos Reis, R.; Dubon, O.D.; Wu, J. et al.
Object Type: Article
System: The UNT Digital Library
Design of Low-Noise Output Amplifiers for P-channel Charge-Coupled Devices Fabricated on High-Resistivity Silicon (open access)

Design of Low-Noise Output Amplifiers for P-channel Charge-Coupled Devices Fabricated on High-Resistivity Silicon

We describe the design and optimization of low-noise, single-stage output amplifiers for p-channel charge-coupled devices (CCDs) used for scientific applications in astronomy and other fields. The CCDs are fabricated on high-resistivity, 4000–5000 -cm, n-type silicon substrates. Single-stage amplifiers with different output structure designs and technologies have been characterized. The standard output amplifier is designed with an n{sup +} polysilicon gate that has a metal connection to the sense node. In an effort to lower the output amplifier readout noise by minimizing the capacitance seen at the sense node, buried-contact technology has been investigated. In this case, the output transistor has a p{sup +} polysilicon gate that connects directly to the p{sup +} sense node. Output structures with buried-contact areas as small as 2 μm × 2 μm are characterized. In addition, the geometry of the source-follower transistor was varied, and we report test results on the conversion gain and noise of the various amplifier structures. By use of buried-contact technology, better amplifier geometry, optimization of the amplifier biases and improvements in the test electronics design, we obtain a 45% reduction in noise, corresponding to 1.7 e{sup −} rms at 70 kpixels/sec.
Date: December 22, 2011
Creator: Haque, S.; Frost, F.; Groulx, R.; Holland, S. E.; Karcher, A.; Kolbe, W. F. et al.
Object Type: Article
System: The UNT Digital Library
MIX and Instability Growth from Oblique Shock (open access)

MIX and Instability Growth from Oblique Shock

We have studied the formation and evolution of shock-induced mix resulting from interface features in a divergent cylindrical geometry. In this research a cylindrical core of high-explosive was detonated to create an oblique shock wave and accelerate the interface. The interfaces studied were between the high-explosive/aluminum, aluminum/plastic, and finally plastic/air. Pre-emplaced surface features added to the aluminum were used to modify this interface. Time sequence radiographic imaging quantified the resulting instability formation from the growth phase to over 60 {micro}s post-detonation. Thus allowing the study of the onset of mix and evolution to turbulence. The plastic used here was porous polyethylene. Radiographic image data are compared with numerical simulations of the experiments.
Date: July 22, 2011
Creator: Molitoris, J D; Batteux, J D; Garza, R G; Tringe, J W; Souers, P C & Forbes, J W
Object Type: Article
System: The UNT Digital Library
Efficient Graph Based Assembly of Short-Read Sequences on Hybrid Core Architecture (open access)

Efficient Graph Based Assembly of Short-Read Sequences on Hybrid Core Architecture

Advanced architectures can deliver dramatically increased throughput for genomics and proteomics applications, reducing time-to-completion in some cases from days to minutes. One such architecture, hybrid-core computing, marries a traditional x86 environment with a reconfigurable coprocessor, based on field programmable gate array (FPGA) technology. In addition to higher throughput, increased performance can fundamentally improve research quality by allowing more accurate, previously impractical approaches. We will discuss the approach used by Convey?s de Bruijn graph constructor for short-read, de-novo assembly. Bioinformatics applications that have random access patterns to large memory spaces, such as graph-based algorithms, experience memory performance limitations on cache-based x86 servers. Convey?s highly parallel memory subsystem allows application-specific logic to simultaneously access 8192 individual words in memory, significantly increasing effective memory bandwidth over cache-based memory systems. Many algorithms, such as Velvet and other de Bruijn graph based, short-read, de-novo assemblers, can greatly benefit from this type of memory architecture. Furthermore, small data type operations (four nucleotides can be represented in two bits) make more efficient use of logic gates than the data types dictated by conventional programming models.JGI is comparing the performance of Convey?s graph constructor and Velvet on both synthetic and real data. We will present preliminary results on …
Date: March 22, 2011
Creator: Sczyrba, Alex; Pratap, Abhishek; Canon, Shane; Han, James; Copeland, Alex; Wang, Zhong et al.
Object Type: Article
System: The UNT Digital Library
TESTING OF ENHANCED CHEMICAL CLEANING OF SRS ACTUAL WASTE TANK 5F AND TANK 12H SLUDGES (open access)

TESTING OF ENHANCED CHEMICAL CLEANING OF SRS ACTUAL WASTE TANK 5F AND TANK 12H SLUDGES

Forty three of the High Level Waste (HLW) tanks at the Savannah River Site (SRS) have internal structures that hinder removal of the last approximately five thousand gallons of waste sludge solely by mechanical means. Chemical cleaning can be utilized to dissolve the sludge heel with oxalic acid (OA) and pump the material to a separate waste tank in preparation for final disposition. This dissolved sludge material is pH adjusted downstream of the dissolution process, precipitating the sludge components along with sodium oxalate solids. The large quantities of sodium oxalate and other metal oxalates formed impact downstream processes by requiring additional washing during sludge batch preparation and increase the amount of material that must be processed in the tank farm evaporator systems and the Saltstone Processing Facility. Enhanced Chemical Cleaning (ECC) was identified as a potential method for greatly reducing the impact of oxalate additions to the SRS Tank Farms without adding additional components to the waste that would extend processing or increase waste form volumes. In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate an alternative to the baseline 8 wt. % OA chemical cleaning …
Date: August 22, 2011
Creator: Martino, C. & King, W.
Object Type: Report
System: The UNT Digital Library
RESULTS FOR THE FOURTH QUARTER 2010 TANK 50 WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS (open access)

RESULTS FOR THE FOURTH QUARTER 2010 TANK 50 WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS

This report details the chemical and radionuclide contaminant results for the characterization of the 2010 Fourth Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC). Information from this characterization will be used by Liquid Waste Operations (LWO) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this report: (1) The concentrations of the reported chemical and radioactive contaminants were less than their respective WAC targets or limits unless noted in this section. (2) The reported detection limits for {sup 94}Nb, {sup 247}Cm and {sup 249}Cf are above the requested limits from Reference 2. However, they are below the limits established in Reference 3. (3) There is an estimated concentration of trimethylbenzene (2.25 mg/L). This is not a WAC analyte, but it is the first time this organic compound has been detected in a quarterly WAC sample from Tank 50. (4) The reported detection limit for Norpar 13 is greater than the limit from Table …
Date: February 22, 2011
Creator: Reigel, M.
Object Type: Report
System: The UNT Digital Library
Development of a Navigator and Imaging Techniques for the Cryogenic Dark Matter Search Detectors (open access)

Development of a Navigator and Imaging Techniques for the Cryogenic Dark Matter Search Detectors

This project contributes to the detection of flaws in the germanium detectors for the Cryogenic Dark Matter Search (CDMS) experiment. Specifically, after imaging the detector surface with a precise imaging and measuring device, they developed software to stitch the resulting images together, applying any necessary rotations, offsets, and averaging, to produce a smooth image of the whole detector that can be used to detect flaws on the surface of the detector. These images were also tiled appropriately for the Google Maps API to use as a navigation tool, allowing viewers to smoothly zoom and pan across the detector surface. Automated defect identification can now be implemented, increasing the scalability of the germanium detector fabrication.
Date: June 22, 2011
Creator: Wilen, Chris & /Carleton Coll. /KIPAC, Menlo Park
Object Type: Report
System: The UNT Digital Library
Spin Transport in Semiconductor heterostructures (open access)

Spin Transport in Semiconductor heterostructures

The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.
Date: February 22, 2011
Creator: Marinescu, Domnita Catalina
Object Type: Report
System: The UNT Digital Library
New Technique for Speciation of Uranium in Sediments Following Acetate-Stimulated Bioremediation (open access)

New Technique for Speciation of Uranium in Sediments Following Acetate-Stimulated Bioremediation

Acetate-stimulated bioremediation is a promising new technique for sequestering toxic uranium contamination from groundwater. The speciation of uranium in sediments after such bioremediation attempts remains unknown as a result of low uranium concentration, and is important to analyzing the stability of sequestered uranium. A new technique was developed for investigating the oxidation state and local molecular structure of uranium from field site sediments using X-Ray Absorption Spectroscopy (XAS), and was implemented at the site of a former uranium mill in Rifle, CO. Glass columns filled with bioactive Rifle sediments were deployed in wells in the contaminated Rifle aquifer and amended with a hexavalent uranium (U(VI)) stock solution to increase uranium concentration while maintaining field conditions. This sediment was harvested and XAS was utilized to analyze the oxidation state and local molecular structure of the uranium in sediment samples. Extended X-Ray Absorption Fine Structure (EXAFS) data was collected and compared to known uranium spectra to determine the local molecular structure of the uranium in the sediment. Fitting was used to determine that the field site sediments did not contain uraninite (UO{sub 2}), indicating that models based on bioreduction using pure bacterial cultures are not accurate for bioremediation in the field. Stability …
Date: June 22, 2011
Creator: unknown
Object Type: Report
System: The UNT Digital Library