Degree Department

Language

The evaluation, development, and application of the correlation consistent basis sets. (open access)

The evaluation, development, and application of the correlation consistent basis sets.

Employing correlation consistent basis sets coupled with electronic structure methods has enabled accurate predictions of chemical properties for second- and third-row main group and transition metal molecular species. For third-row (Ga-Kr) molecules, the performance of the correlation consistent basis sets (cc-pVnZ, n=D, T, Q, 5) for computing energetic (e.g., atomization energies, ionization energies, electron and proton affinities) and structural properties using the ab initio coupled cluster method including single, double, and quasiperturbative triple excitations [CCSD(T)] and the B3LYP density functional method was examined. The impact of relativistic corrections on these molecular properties was determined utilizing the Douglas-Kroll (cc-pVnZ-DK) and pseudopotential (cc-pVnZ-PP) forms of the correlation consistent basis sets. This work was extended to the characterization of molecular properties of novel chemically bonded krypton species, including HKrCl, FKrCF3, FKrSiF3, FKrGeF3, FKrCCF, and FKrCCKrF, and provided the first evidence of krypton bonding to germanium and the first di-krypton system. For second-row (Al-Ar) species, the construction of the core-valence correlation consistent basis sets, cc-pCVnZ was reexamined, and a revised series, cc-pCV(n+d)Z, was developed as a complement to the augmented tight-d valence series, cc-pV(n+d)Z. Benchmark calculations were performed to show the utility of these new sets for second-row species. Finally, the correlation consistent basis …
Date: December 2006
Creator: Yockel, Scott
System: The UNT Digital Library
Computational Studies of Coordinatively Unsaturated Transition Metal Complexes (open access)

Computational Studies of Coordinatively Unsaturated Transition Metal Complexes

In this research the validity of various computational techniques has been determined and applied the appropriate techniques to investigate and propose a good catalytic system for C-H bond activation and functionalization. Methane being least reactive and major component of natural gas, its activation and conversion to functionalized products is of great scientific and economic interest in pure and applied chemistry. Thus C-H activation followed by C-C/C-X functionalization became crux of the synthesis. DFT (density functional theory) methods are well suited to determine the thermodynamic as well as kinetic factors of a reaction. The obtained results are helpful to industrial catalysis and experimental chemistry with additional information: since C-X (X = halogens) bond cleavage is important in many metal catalyzed organic syntheses, the results obtained in this research helps in determining the selectivity (kinetic or thermodynamic) advantage. When C-P bond activation is considered, results from chapter 3 indicated that C-X activation barrier is lower than C-H activation barrier. The results obtained from DFT calculations not only gave a good support to the experimental results and verified the experimentally demonstrated Ni-atom transfer mechanism from Ni=E (E = CH2, NH, PH) activating complex to ethylene to form three-membered ring products but also validated …
Date: December 2006
Creator: Vaddadi, Sridhar
System: The UNT Digital Library
General Chemistry Topic Coverage (GCTC) comparison between community colleges and universities in the United States. (open access)

General Chemistry Topic Coverage (GCTC) comparison between community colleges and universities in the United States.

This study is based on survey responses of 224 general chemistry instructors at United States (U.S.) community colleges and universities representing 46 states. The mean values of General Chemistry Topic Coverage (GCTC) score, developed by this researcher specifically for this dissertation study as a measure of course content, were statistically analyzed. The aim of this study is to answer five research questions: (a) Is there a difference in mean GCTC scores between U.S. community colleges and four-year colleges and universities? (b) If there is a difference in mean GCTC score between the two study groups, what are the observed differences in subtopics covered between community colleges and four-year colleges and universities? (c) Considering both community colleges and universities, is there a difference in mean GCTC score between the different designated U.S. regions? (d) Considering both community college and university professors, is there a difference in GCTC score for professors with a master's degree compared to those with a doctorate?, and (e) Is there a correlation between GCTC score and the percentage of students that major in science? Results indicate that there is a statistically significant difference in course content between community colleges and universities, there is a statistically significant difference …
Date: December 2006
Creator: El-Ashmawy, Amina Khalifa
System: The UNT Digital Library