Saturation and foaming of thermoplastic nanocomposites using supercritical CO2. (open access)

Saturation and foaming of thermoplastic nanocomposites using supercritical CO2.

Polystyrene (PS) nanocomposite foams were prepared using supercritical fluid (SCF) CO2 as a solvent and blowing agent. PS was first in-situ polymerized with a range of concentrations of montmorillonite layered silicate (MLS). The polymerized samples were then compression molded into 1 to 2mm thick laminates. The laminates were foamed in a batch supercritical CO2 process at various temperatures and pressures from 60°-85°C and 7.6-12MPa. The resulting foams were analyzed by scanning electron microscopy to determine effect of MLS on cellular morphology. Differential scanning calorimetry was used to determine the impact of nanocomposite microstructure on glass transition of the foamed polymer. X-ray diffraction spectra suggested that the PS/MLS composite had an intercalated structure at both the 1% and 3% mixtures, and that the intercalation may be enhanced by the foaming process.
Date: May 2005
Creator: Strauss, William C.
System: The UNT Digital Library
A magnetorheological study of single-walled and multi-walled carbon nanotube dispersions in mineral oil and epoxy resin. (open access)

A magnetorheological study of single-walled and multi-walled carbon nanotube dispersions in mineral oil and epoxy resin.

Single wall carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) were dispersed in mineral oil and epoxy resin. The magnetorheological properties of these dispersions were studied using a parallel plate rheometer. Strain sweeps, frequency sweeps, magneto sweeps and steady shear tests were conducted in various magnetic fields. G', G", h* and ty increased with increasing magnetic field, which was partially attributed to the increasing degree of the alignment of nanotubes in a stronger magnetic field. The SWNT/mo dispersions exhibited more pronounced magnetic field dependence than SWNT/ep and MWNT/mo counterparts due to their much lower viscosity. The alignment of SWNTs in mineral oil increased with rising nanotube concentration up to 2.5vol% but were significantly restricted at 6.41vol% due to nanotube flocculation.
Date: May 2005
Creator: Yang, Zhengtao
System: The UNT Digital Library
Morphological properties of poly (ethylene terephthalate) (PET) nanocomposites in relation to fracture toughness. (open access)

Morphological properties of poly (ethylene terephthalate) (PET) nanocomposites in relation to fracture toughness.

The effect of incorporation of montmorillonite layered silicate (MLS) on poly (ethylene terephthalate) (PET) matrix was investigated. MLS was added in varying concentration of 1 to 5 weight percent in the PET matrix. DSC and polarized optical microscopy were used to determine the crystallization effects of MLS addition. Non isothermal crystallization kinetics showed that the melting temperature and crystallization temperature decrease as the MLS percent increases. This delayed crystallization along with the irregular spherulitic shape indicates hindered crystallization in the presence of MLS platelets. The influence of this morphology was related with the fracture toughness of PET nanocomposites using essential work of fracture coupled with the infra red (IR) thermography. Both the essential as well as non essential work of fracture decreased on addition of MLS with nanocomposite showing reduced toughness.
Date: August 2005
Creator: Pendse, Siddhi
System: The UNT Digital Library
Indentation induced deformation in metallic materials. (open access)

Indentation induced deformation in metallic materials.

Nanoindentation has brought in many features of research over the past decade. This novel technique is capable of producing insights into the small ranges of deformation. This special point has brought a lot of focus in understanding the deformation behavior under the indenter. Nickel, iron, tungsten and copper-niobium alloy system were considered for a surface deformation study. All the samples exhibited a spectrum of residual deformation. The change in behavior with indentation and the materials responses to deformation at low and high loads is addressed in this study. A study on indenter geometry, which has a huge influence on the contact area and subsequently the hardness and modulus value, has been attempted. Deformation mechanisms that govern the plastic flow in materials at low loads of indentation and their sensitivity to the rate of strain imparted has been studied. A transition to elastic, plastic kind of a tendency to an elasto-plastic tendency was seen with an increase in the strain rate. All samples exhibited the same kind of behavior and a special focus is drawn in comparing the FCC nickel with BCC tungsten and iron where the persistence of the elastic, plastic response was addressed. However there is no absolute reason …
Date: December 2005
Creator: Vadlakonda, Suman
System: The UNT Digital Library