Suppression of the antitumoral activity of natural killer cells under indirect coculture with cancer-associated fibroblasts in a pancreatic TIME-on-chip model (open access)

Suppression of the antitumoral activity of natural killer cells under indirect coculture with cancer-associated fibroblasts in a pancreatic TIME-on-chip model

Article describes how recently, natural killer cells emerged as a treatment option for various solid tumors. The effect of activated pancreatic stellate cells on natural killer cell-mediated anticancer efficacy under three-dimensional coculture conditions was investigated.
Date: September 27, 2023
Creator: Kim, Hyun-Ah; Kim, Hyunsoo; Nam, Min-Kyung; Park, Jong Kook; Lee, Moo-Yeal; Chung, Seok et al.
System: The UNT Digital Library
An approach for reliably identifying high-frequency oscillations and reducing false-positive detections (open access)

An approach for reliably identifying high-frequency oscillations and reducing false-positive detections

Article states that high-frequency oscillation (HFO), classified as ripples (80-240 Hz) and fast ripples (240-500 Hz), is regarded as a promising biomarker of epilepsy. The authors presented an integrated, multi-layered procedure capable of automatically rejecting HFOs from a variety of common false positives, such as motion, background signals, and sharp transients.
Date: September 2, 2022
Creator: Zhou, Yufeng; You, Jing; Kumar, Udaya; Weiss, Shennan A.; Bragin, Anatol; Engel Jr., Jerome et al.
System: The UNT Digital Library
Bioengineering Systems for Modulating Notch Signaling in Cardiovascular Development, Disease, and Regeneration (open access)

Bioengineering Systems for Modulating Notch Signaling in Cardiovascular Development, Disease, and Regeneration

This article is a review summarizing the significant roles of Notch signaling in individual cardiac cell types. It covers the bioengineering systems of microfluidics, hydrogel, spheroid, and 3D bioprinting and provides insights into ancillary supports of bioengineering systems, varied types of cardiovascular cells, and advanced characterization approaches in further refining Notch signaling in cardiovascular development, disease, and regeneration.
Date: September 30, 2021
Creator: Huerta Gomez, Angello; Joshi, Sanika; Yang, Yong; Tune, Johnathan D. & Zhao, Ming-Tao
System: The UNT Digital Library