Language

Mean and Peak Wind Load Reduction on Heliostats (open access)

Mean and Peak Wind Load Reduction on Heliostats

This report presents the results of wind-tunnel tests supported through the Solar Energy Research Institute (SERI) by the Office of Solar Thermal Technology of the US Department of Energy as part of the SERI research effort on innovative concentrators. As gravity loads on drive mechanisms are reduced through stretched-membrane technology, the wind-load contribution of the required drive capacity increases in percentage. Reduction of wind loads can provide economy in support structure and heliostat drive. Wind-tunnel tests have been directed at finding methods to reduce wind loads on heliostats. The tests investigated both mean and peak forces, and moments. A significant increase in ability to predict heliostat wind loads and their reduction within a heliostat field was achieved. In addition, a preliminary review of wind loads on parabolic dish collectors was conducted, resulting in a recommended research program for these type collectors. 42 refs., 38 figs., 1 tab.
Date: September 1, 1987
Creator: Peterka, J. A.; Tan, L.; Bienkiewcz, B. & Cermak, J. E.
System: The UNT Digital Library
Palladium Catalyzed Coupling Reactions: Mechanism of Reductive Elimination. Progress Report, October 1, 1979-September 30, 1980. [Ethane Elimination] (open access)

Palladium Catalyzed Coupling Reactions: Mechanism of Reductive Elimination. Progress Report, October 1, 1979-September 30, 1980. [Ethane Elimination]

The 1,1-reductive elimination of ethane from three cis-bis(phosphine)-dimethylpalladium complexes, L/sub 2/Pd(CH/sub 3/)/sub 2/ (L = PPh/sub 3/, PPh/sub 2/,CH/sub 3/ and L/sub 2/ = Ph/sub 2/PCH/sub 2/CH/sub 2/PPh/sub 2/), and three trans analogs (L = PPh/sub 3/, PPh/sub 2/CH/sub 3/ and L/sub 2/ = 2,11-bis(diphenylphosphinomethyl)benzo(c)phenanthrene (TRANSPHOS)) was carried out. The three cis complexes underwent reductive elimination in the presence of coordinating solvents (DMSO, DMF, and THF). The trans complexes which could isomerize to cis (L = PPh/sub 3/, PPh/sub 2/CH/sub 3/) did so in polar solvents and then underwent reductive elimination. TRANSPHOS dimethylpalladium would not undergo reductive elimination of ethane. The eliminations from the cis isomers were intramolecular and displayed first order kinetics. Although TRANSPHOS dimethylpalladium(II) would not undergo a 1,1-reductive elimination of ethane, the addition of CD/sub 3/I to a DMSO solution of this complex at 25/sup 0/C rapidly produced CD/sub 3/-CH/sub 3/, implicating a transient palladium(IV) intermediate. E- and Z-bromostyrylbis(diphenylmethylphosphine)palladium(0) react with methyl lithium in THF at ambient temperature to give the E- and Z- propenylbenzenes, respectively. At -78/sup 0/C, the intermediate E- and Z-styrylmethylbis(diphenylmethylphosphine)palladium(II) complexes (9a,b) can be isolated. On raising the temperature of solutions of 9a,b in THF, E- and Z-propenylbenzenes are produced. The reductive elimination …
Date: September 1, 1980
Creator: Stille, J. K.
System: The UNT Digital Library