MOGO: Model-Oriented Global Optimization of Petascale Applications (open access)

MOGO: Model-Oriented Global Optimization of Petascale Applications

The MOGO project was initiated under in 2008 under the DOE Program Announcement for Software Development Tools for Improved Ease-of-Use on Petascale systems (LAB 08-19). The MOGO team consisted of Oak Ridge National Lab, Argonne National Lab, and the University of Oregon. The overall goal of MOGO was to attack petascale performance analysis by developing a general framework where empirical performance data could be efficiently and accurately compared with performance expectations at various levels of abstraction. This information could then be used to automatically identify and remediate performance problems. MOGO was be based on performance models derived from application knowledge, performance experiments, and symbolic analysis. MOGO was able to make reasonable impact on existing DOE applications and systems. New tools and techniques were developed, which, in turn, were used on important DOE applications on DOE LCF systems to show significant performance improvements.
Date: September 14, 2012
Creator: Malony, Allen D. & Shende, Sameer S.
System: The UNT Digital Library
Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report (open access)

Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the …
Date: September 30, 2011
Creator: Cerimele, Guy
System: The UNT Digital Library
Recovery Act: Federspiel Controls (now Vigilent) and State of California Department of General Services Data Center Energy Efficient Cooling Control Demonstration (open access)

Recovery Act: Federspiel Controls (now Vigilent) and State of California Department of General Services Data Center Energy Efficient Cooling Control Demonstration

Eight State of California data centers were equipped with an intelligent energy management system to evaluate the effectiveness, energy savings, dollar savings and benefits that arise when powerful artificial intelligence-based technology measures, monitors and actively controls cooling operations. Control software, wireless sensors and mesh networks were used at all sites. Most sites used variable frequency drives as well. The system dynamically adjusts temperature and airflow on the fly by analyzing real-time demands, thermal behavior and historical data collected on site. Taking into account the chaotic interrelationships of hundreds to thousands of variables in a data center, the system optimizes the temperature distribution across a facility while also intelligently balancing loads, outputs, and airflow. The overall project will provide a reduction in energy consumption of more than 2.3 million kWh each year, which translates to $240,000 saved and a reduction of 1.58 million pounds of carbon emissions. Across all sites, the cooling energy consumption was reduced by 41%. The average reduction in energy savings across all the sites that use VFDs is higher at 58%. Before this case study, all eight data centers ran the cooling fans at 100% capacity all of the time. Because of the new technology, cooling fans …
Date: September 30, 2011
Creator: Federspiel, Clifford & Evers, Myah
System: The UNT Digital Library
Variable Density Flow Modeling for Simulation Framework for Regional Geologic CO{sub 2} Storage Along Arches Province of Midwestern United States (open access)

Variable Density Flow Modeling for Simulation Framework for Regional Geologic CO{sub 2} Storage Along Arches Province of Midwestern United States

The Arches Province in the Midwestern U.S. has been identified as a major area for carbon dioxide (CO{sub 2}) storage applications because of the intersection of Mt. Simon sandstone reservoir thickness and permeability. To better understand large-scale CO{sub 2} storage infrastructure requirements in the Arches Province, variable density scoping level modeling was completed. Three main tasks were completed for the variable density modeling: Single-phase, variable density groundwater flow modeling; Scoping level multi-phase simulations; and Preliminary basin-scale multi-phase simulations. The variable density modeling task was successful in evaluating appropriate input data for the Arches Province numerical simulations. Data from the geocellular model developed earlier in the project were translated into preliminary numerical models. These models were calibrated to observed conditions in the Mt. Simon, suggesting a suitable geologic depiction of the system. The initial models were used to assess boundary conditions, calibrate to reservoir conditions, examine grid dimensions, evaluate upscaling items, and develop regional storage field scenarios. The task also provided practical information on items related to CO{sub 2} storage applications in the Arches Province such as pressure buildup estimates, well spacing limitations, and injection field arrangements. The Arches Simulation project is a three-year effort and part of the United States …
Date: September 30, 2011
Creator: Sminchak, Joel
System: The UNT Digital Library
FY 2011 4th Quarter Metric: Estimate of Future Aerosol Direct and Indirect Effects (open access)

FY 2011 4th Quarter Metric: Estimate of Future Aerosol Direct and Indirect Effects

The global and annual mean aerosol direct and indirect effects, relative to 1850 conditions, estimated from CESM simulations are 0.02 W m-2 and -0.39 W m-2, respectively, for emissions in year 2100 under the IPCC RCP8.5 scenario. The indirect effect is much smaller than that for 2000 emissions because of much smaller SO2 emissions in 2100; the direct effects are small due to compensation between warming by black carbon and cooling by sulfate.
Date: September 21, 2011
Creator: Koch, D.
System: The UNT Digital Library
Marketing Strategy and Implementation (open access)

Marketing Strategy and Implementation

This report documents the preparation of materials for the marketing campaign that has been designed for middle and high school students in New Mexico to increase interest in participation in national security careers at the National Nuclear Security Administration. The materials and the marketing campaign build on the research that was previously completed, as well as the focus groups that were conducted. This work is a part of the National Nuclear Security Preparedness Project (NSPP). Previous research included outcome analysis to determine appropriate marketing strategies. The analysis was based upon focus groups with middle school and high school students, student interactions, and surveys completed by students to understand and gauge student interest in Science, Technology, Engineering, and Math (STEM) subjects, interest in careers at NNSA, future job considerations, and student desire to pursue post-secondary education. Further, through the focus groups, students were asked to attend a presentation on NNSA job opportunities and employee requirements. The feedback received from the students was utilized to develop the focus and components of a marketing campaign divided into DISCO (Discovering Intelligence and Security Career Opportunities) for the middle school age group and DISCO…..Your Way! for high school age groups. Both campaigns have an intertwined …
Date: September 30, 2010
Creator: unknown
System: The UNT Digital Library
Next-Generation Flywheel Energy Storage: Development of a 100 kWh/100 kW Flywheel Energy Storage Module (open access)

Next-Generation Flywheel Energy Storage: Development of a 100 kWh/100 kW Flywheel Energy Storage Module

GRIDS Project: Beacon Power is developing a flywheel energy storage system that costs substantially less than existing flywheel technologies. Flywheels store the energy created by turning an internal rotor at high speeds—slowing the rotor releases the energy back to the grid when needed. Beacon Power is redesigning the heart of the flywheel, eliminating the cumbersome hub and shaft typically found at its center. The improved design resembles a flying ring that relies on new magnetic bearings to levitate, freeing it to rotate faster and deliver 400% as much energy as today’s flywheels. Beacon Power’s flywheels can be linked together to provide storage capacity for balancing the approximately 10% of U.S. electricity that comes from renewable sources each year.
Date: September 22, 2010
Creator: unknown
System: The UNT Digital Library
Powerful, Efficient Electric Vehicle Chargers: Low-Cost, Highly-Integrated Silicon Carbide (SiC) Multichip Power Modules (MCPMs) for Plug-In Hybrid Electric (open access)

Powerful, Efficient Electric Vehicle Chargers: Low-Cost, Highly-Integrated Silicon Carbide (SiC) Multichip Power Modules (MCPMs) for Plug-In Hybrid Electric

ADEPT Project: Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10 times smaller than existing chargers.
Date: September 14, 2010
Creator: unknown
System: The UNT Digital Library
Metacapacitors for LED Lighting: Metacapacitors (open access)

Metacapacitors for LED Lighting: Metacapacitors

ADEPT Project: The CUNY Energy Institute is developing less expensive, more efficient, smaller, and longer-lasting power converters for energy-efficient LED lights. LEDs produce light more efficiently than incandescent lights and last significantly longer than compact fluorescent bulbs, but they require more sophisticated power converter technology, which increases their cost. LEDs need more sophisticated converters because they require a different type of power (low voltage direct current, or DC) than what's generally supplied by power outlets. The CUNY Energy Institute is developing sophisticated power converters for LEDs that contain capacitors made from new, nanoscale materials. Capacitors are electrical components that are used to store energy. CUNY's unique capacitors are configured with advanced power circuits to more efficiently control and convert power to the LED lighting source. They also eliminate the need for large magnetic components, instead relying on networks of capacitors that can be easily printed on plastic substrate. CUNY's prototype LED power converter already meets DOE's 2020 projections for the energy efficiency of LED power converters.
Date: September 2, 2010
Creator: unknown
System: The UNT Digital Library
Regenerative Fuel Cells: Renewable Energy Storage Devices Based on Neutral Water Input (open access)

Regenerative Fuel Cells: Renewable Energy Storage Devices Based on Neutral Water Input

GRIDS Project: Proton Energy Systems is developing an energy storage device that converts water to hydrogen fuel when excess electricity is available, and then uses hydrogen to generate electricity when energy is needed. The system includes an electrolyzer, which generates and separates hydrogen and oxygen for storage, and a fuel cell which converts the hydrogen and oxygen back to electricity. Traditional systems use acidic membranes, and require expensive materials including platinum and titanium for key parts of the system. In contrast, Proton Energy Systems’ new system will use an inexpensive alkaline membrane and will contain only inexpensive metals such as nickel and stainless steel. If successful, Proton Energy Systems’ system will have similar performance to today’s regenerative fuel cell systems at a fraction of the cost, and can be used to store electricity on the electric grid.
Date: September 1, 2010
Creator: unknown
System: The UNT Digital Library
SECA Coal-Based Systems (open access)

SECA Coal-Based Systems

This report documents the results of Cooperative Agreement DE-FC26-05NT42613 between Siemens Energy and the U.S. Department of Energy for the period October 1, 2008 through September 30, 2010. The Phase I POCD8R0 stack test was successfully completed as it operated for approximately 5,300 hrs and achieved all test objectives. The stack test article contained twenty-four 75 cm active length Delta8 scandia-stabilized zirconia cells. Maximum power was approximately 10 kWe and the SOFC generator demonstrated an availability factor of 85% at 50% power or greater. The Phase II POCD8R1 stack test operated for approximately 410 hrs before being aborted due to a sudden decrease in voltage accompanied by a rapid increase in temperature. The POCD8R1 test article contained forty-eight 100 cm active length Delta8 scandia-stabilized zirconia cells arranged in an array of six bundles, with each bundle containing eight cells. Cell development activities resulted in an approximate 100% improvement in cell power at 900°C. Cell manufacturing process improvements led to manufacturing yields of greater than 40% for the Delta8 cells. Delta8 cells with an active length of 100 cm were successfully manufactured as were cells with a seamless closed end. A pressurized cell test article was assembled, installed into the pressurized …
Date: September 1, 2010
Creator: Pierre, Joseph
System: The UNT Digital Library
Semi-Solid Flowable Battery Electrodes: Semi-Solid Flow Cells for Automotive and Grid-Level Energy Storage (open access)

Semi-Solid Flowable Battery Electrodes: Semi-Solid Flow Cells for Automotive and Grid-Level Energy Storage

BEEST Project: Scientists at 24M are crossing a Li-Ion battery with a fuel cell to develop a semi-solid flow battery. This system relies on some of the same basic chemistry as a standard Li-Ion battery, but in a flow battery the energy storage material is held in external tanks, so storage capacity is not limited by the size of the battery itself. The design makes it easier to add storage capacity by simply increasing the size of the tanks and adding more paste. In addition, 24M's design also is able to extract more energy from the semi-solid paste than conventional Li-Ion batteries. This creates a cost-effective, energy-dense battery that can improve the driving range of EVs or be used to store energy on the electric grid.
Date: September 1, 2010
Creator: unknown
System: The UNT Digital Library
Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology (open access)

Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology

GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.
Date: September 1, 2010
Creator: unknown
System: The UNT Digital Library
Titanium-Alloy Power Capacitor: High-Power Titanate Capacitor for Power Electronics (open access)

Titanium-Alloy Power Capacitor: High-Power Titanate Capacitor for Power Electronics

ADEPT Project: There is a constant demand for better performing, more compact, lighter weight, and lower cost electronic devices. Unfortunately, the materials traditionally used to make components for electronic devices have reached their limits. Case Western is developing capacitors made of new materials that could be used to produce the next generation of compact and efficient high-powered consumer electronics and electronic vehicles. A capacitor is an important component of an electronic device. It stores an electric charge and then discharges it into an electrical circuit in the device. Case Western is creating its capacitors from titanium, an abundant material extracted from ore which can be found in the U.S. Case Western's capacitors store electric charges on the surfaces of films, which are grown on a titanium alloy electrode that is formed as a spinal column with attached branches. The new material and spine design make the capacitor smaller and lighter than traditional capacitors, and they enable the component to store 300% more energy than capacitors of the same weight made of tantalum, the current industry standard. Case Western's titanium-alloy capacitors also spontaneously self-repair, which prolongs their life.
Date: September 1, 2010
Creator: unknown
System: The UNT Digital Library
Transistors for Electric Motor Drives: High-Performance GaN HEMT Modules for Agile Power Electronics (open access)

Transistors for Electric Motor Drives: High-Performance GaN HEMT Modules for Agile Power Electronics

ADEPT Project: Transphorm is developing transistors with gallium nitride (GaN) semiconductors that could be used to make cost-effective, high-performance power converters for a variety of applications, including electric motor drives which transmit power to a motor. A transistor acts like a switch, controlling the electrical energy that flows around an electrical circuit. Most transistors today use low-cost silicon semiconductors to conduct electrical energy, but silicon transistors don’t operate efficiently at high speeds and voltage levels. Transphorm is using GaN as a semiconductor material in its transistors because GaN performs better at higher voltages and frequencies, and it is more energy efficient than straight silicon. However, Transphorm is using inexpensive silicon as a base to help keep costs low. The company is also packaging its transistors with other electrical components that can operate quickly and efficiently at high power levels—increasing the overall efficiency of both the transistor and the entire motor drive.
Date: September 1, 2010
Creator: unknown
System: The UNT Digital Library
Utility-Scale Power Router: Dynamic Control of Grid Assets Using Direct AC Converter Cells (open access)

Utility-Scale Power Router: Dynamic Control of Grid Assets Using Direct AC Converter Cells

ADEPT Project: Georgia Tech is developing a cost-effective, utility-scale power router that uses an enhanced transformer to more efficiently direct power on the grid. Existing power routing technologies are too expensive for widespread use, but the ability to route grid power to match real-time demand and power outages would significantly reduce energy costs for utilities, municipalities, and consumers. Georgia Tech is adding a power converter to an existing grid transformer to better control power flows at about 1/10th the cost of existing power routing solutions. Transformers convert the high-voltage electricity that is transmitted through the grid into the low-voltage electricity that is used by homes and businesses. The added converter uses fewer steps to convert some types of power and eliminates unnecessary power storage, among other improvements. The enhanced transformer is more efficient, and it would still work even if the converter fails, ensuring grid reliability.
Date: September 1, 2010
Creator: unknown
System: The UNT Digital Library
Utility-Scale Silicon Carbide Power Transistors: 15 kV SiC IGBT Power Modules for Grid Scale Power Conversion (open access)

Utility-Scale Silicon Carbide Power Transistors: 15 kV SiC IGBT Power Modules for Grid Scale Power Conversion

ADEPT Project: Cree is developing silicon carbide (SiC) power transistors that are 50% more energy efficient than traditional transistors. Transistors act like a switch, controlling the electrical energy that flows through an electrical circuit. Most power transistors today use silicon semiconductors to conduct electricity. However, transistors with SiC semiconductors operate at much higher temperatures, as well as higher voltage and power levels than their silicon counterparts. SiC-based transistors are also smaller and require less cooling than those made with traditional silicon power technology. Cree's SiC transistors will enable electrical circuits to handle higher power levels more efficiently, and they will result in much smaller and lighter electrical devices and power converters. Cree, an established leader in SiC technology, has already released a commercially available SiC transistor that can operate at up to 1,200 volts. The company has also demonstrated a utility-scale SiC transistor that operates at up to 15,000 volts.
Date: September 1, 2010
Creator: unknown
System: The UNT Digital Library
Utility-Scale Silicon Carbide Semiconductor: Monolithic Silicon Carbide Anode Switched Thyristor for Medium Voltage Power Conversion (open access)

Utility-Scale Silicon Carbide Semiconductor: Monolithic Silicon Carbide Anode Switched Thyristor for Medium Voltage Power Conversion

ADEPT Project: GeneSiC is developing an advanced silicon-carbide (SiC)-based semiconductor called an anode-switched thyristor. This low-cost, compact SiC semiconductor conducts higher levels of electrical energy with better precision than traditional silicon semiconductors. This efficiency will enable a dramatic reduction in the size, weight, and volume of the power converters and electronic devices it's used in.GeneSiC is developing its SiC-based semiconductor for utility-scale power converters. Traditional silicon semiconductors can't process the high voltages that utility-scale power distribution requires, and they must be stacked in complicated circuits that require bulky insulation and cooling hardware. GeneSiC's semiconductors are well suited for high-power applications like large-scale renewable wind and solar energy installations.
Date: September 1, 2010
Creator: unknown
System: The UNT Digital Library
Voltage Regulator Chip: Power Supplies on a Chip (open access)

Voltage Regulator Chip: Power Supplies on a Chip

ADEPT Project: CPES at Virginia Tech is finding ways to save real estate on a computer's motherboard that could be used for other critical functions. Every computer processor today contains a voltage regulator that automatically maintains a constant level of electricity entering the device. These regulators contain bulky components and take up about 30% of a computer's motherboard. CPES at Virginia Tech is developing a voltage regulator that uses semiconductors made of gallium nitride on silicon (GaN-on-Si) and high-frequency soft magnetic material. These materials are integrated on a small, 3D chip that can handle the same amount of power as traditional voltage regulators at 1/10 the size and with improved efficiency. The small size also frees up to 90% of the motherboard space occupied by current voltage regulators.
Date: September 1, 2010
Creator: unknown
System: The UNT Digital Library
Structure and Function of Microbial Metal-Reduction Proteins (open access)

Structure and Function of Microbial Metal-Reduction Proteins

In this project, we proposed (i) identification of metal-reduction genes, (ii) development of new threading techniques and (iii) fold recognition and structure prediction of metal-reduction proteins. However, due to the reduction of the budget, we revised our plan to focus on two specific aims of (i) developing a new threading-based protein structure prediction method, and (ii) developing an expert system for protein structure prediction.
Date: September 2, 2009
Creator: Xu, Ying; Crawford, Oakly H.; Xu, Dong; Larimer, Frank W.; Uberbacher, Edward C. & Zhou, Jizhong
System: The UNT Digital Library
Attosecond Physics 2009 (July 28 to August 1, 2009, at Kansas State U/Manhattan) (open access)

Attosecond Physics 2009 (July 28 to August 1, 2009, at Kansas State U/Manhattan)

The 2nd Attosecond Physics conference was hosted by the J.R. Macdonald Laboratory group from July 28 to August 1, 2009, at Kansas State University,Manhattan, Kansas about 215 participants from all over the world attended this meeting. DOE provided support for U.S. graduate students and post doctoral fellows attending this meeting. No papers/proceedings were published from this conference.
Date: 2009-09~
Creator: Ben-Itzhak, Itzik
System: The UNT Digital Library
National Security Technology Incubation Project Continuation Plan (open access)

National Security Technology Incubation Project Continuation Plan

This document contains a project continuation plan for the National Security Technology Incubator (NSTI). The plan was developed as part of the National Security Preparedness Project (NSPP) funded by a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This continuation plan describes the current status of NSTI (staffing and clients), long-term goals, strategies, and long-term financial solvency goals.The Arrowhead Center of New Mexico State University (NMSU) is the operator and manager of the NSTI. To realize the NSTI, Arrowhead Center must meet several performance objectives related to planning, development, execution, evaluation, and sustainability. This continuation plan is critical to the success of NSTI in its mission of incubating businesses with security technology products and services.
Date: September 30, 2008
Creator: unknown
System: The UNT Digital Library
Final Scientific and Technical Report for Grant DE-FG02-99ER41099 Entitled “Study the Collective Behavior of Quarks and Gluons in High Energy Nuclear Collisions” (open access)

Final Scientific and Technical Report for Grant DE-FG02-99ER41099 Entitled “Study the Collective Behavior of Quarks and Gluons in High Energy Nuclear Collisions”

This is the final technical/scientific report for a heavy ion research program on the PHOBOS experiment at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory.
Date: September 8, 2008
Creator: Manly, Steven
System: The UNT Digital Library
Electron Emission as a Probe of Plastic Deformation in Single Crystal Metals (open access)

Electron Emission as a Probe of Plastic Deformation in Single Crystal Metals

Work under this grant focused on the use of photoelectron emission as a probe of deformation processes in metals, principally single crystal and polycrystalline aluminum. Dislocations intersecting the surface produce patches of low work function metal which emit electrons when illuminated with the appropriate ultraviolet radiation. We have shown that changes in the photoemission signals during deformation can be used to identify the onset of strain localization. In some systems, the photoelectron kinetic energy distribution reflects the distribution of surface orientations, which depends on the competition between grain rotation and slip. Photoemission electron microscope images of shape memory alloys and thin films show marked changes in intensity and surface topography as the materal passes through its transition temperature. Photoelectron emission provides important information on the temporal progress of deformation processes that complements the spatial information provided by other techniques.
Date: September 28, 2007
Creator: Dickinson, J. Thomas
System: The UNT Digital Library