Using Motor Electrical Signature Analysis to Determine the Mechanical Condition of Vane-Axial Fans (open access)

Using Motor Electrical Signature Analysis to Determine the Mechanical Condition of Vane-Axial Fans

The purpose of this research was a proof of concept using a fan motor stator as transducer to monitor motor rotor and attached axial fan for mechanical motion. The proof was to determine whether bearing faults and fan imbalances could be detected in vane-axial fans using Motor Electrical Signature Analysis (MESA). The data was statistically analyzed to determine if the MESA systems could distinguish between baseline conditions and discrete fault frequencies for the three test conditions: bearing inner race defect, bearing outer race defect, and fan imbalance. The statistical conclusions for these proofs of concept were that MESA could identify all three faulted conditions.
Date: August 2002
Creator: Doan, Donald Scott
System: The UNT Digital Library
Two-Phase Spray Cooling with HFC-134a and HFO-1234yf for Thermal Management of Automotive Power Electronics using Practical Enhanced Surfaces (open access)

Two-Phase Spray Cooling with HFC-134a and HFO-1234yf for Thermal Management of Automotive Power Electronics using Practical Enhanced Surfaces

The objective of this research was to investigate the performance of two-phase spray cooling with HFC-134a and HFO-1234yf refrigerants using practical enhanced heat transfer surfaces. Results of the study were expected to provide a quantitative spray cooling performance comparison with working fluids representing the current and next-generation mobile air conditioning refrigerants, and demonstrate the feasibility of this approach as an alternative active cooling technology for the thermal management of high heat flux power electronics (i.e., IGBTs) in electric-drive vehicles. Potential benefits of two-phase spray cooling include achieving more efficient and reliable operation, as well as compact and lightweight system design that would lead to cost reduction. The experimental work involved testing of four different enhanced boiling surfaces in comparison to a plain reference surface, using a commercial pressure-atomizing spray nozzle at a range of liquid flow rates for each refrigerant to determine the spray cooling performance with respect to heat transfer coefficient (HTC) and critical heat flux (CHF). The heater surfaces were prepared using dual-stage electroplating, brush coating, sanding, and particle blasting, all featuring "practical" room temperature processes that do not require specialized equipment. Based on the obtained results, HFC-134a provided a better heat transfer performance through higher HTC and …
Date: August 2017
Creator: Altalidi, Sulaiman Saleh
System: The UNT Digital Library
Seismic Performance Evaluation of Novel Cold-Formed Steel Framed Shear Walls Sheathed with Corrugated Steel Sheets (open access)

Seismic Performance Evaluation of Novel Cold-Formed Steel Framed Shear Walls Sheathed with Corrugated Steel Sheets

This thesis presents experiments and numerical analysis of a novel cold-formed steel framed shear wall sheathed with corrugated steel sheets. The objective of this newly designed shear wall is to meet the growing demand of mid-rise buildings and the combustibility requirement in the International Building Code. The strength of the novel shear wall is higher than currently code certified shear wall in AISI S400-15 so that it could be more favorable for mid-rise building in areas that are prone to earthquakes and hurricanes. Full-scale monotonic and cyclic tests were conducted on bearing walls and shear walls under combined lateral and gravity loads. Though the gravity loads had negative effects on the strength and stiffness of the shear wall due to the buckling of the chord framing members, it still shows promise to be used in mid-rise buildings. The objective of numerical analysis is to quantify the seismic performance factors of the newly design shear wall lateral-force resisting system by using the recommended methodology in FEMA P695. Two groups of building archetypes, story varied from two to five, were simulated in OpenSees program. Nonlinear static and dynamic analysis were performed in both horizontal directions of each building archetype. Finally, the results …
Date: August 2017
Creator: Lan, Xing
System: The UNT Digital Library
Investigation of Immersion Cooled ARM-Based Computer Clusters for Low-Cost, High-Performance Computing (open access)

Investigation of Immersion Cooled ARM-Based Computer Clusters for Low-Cost, High-Performance Computing

This study aimed to investigate performance of ARM-based computer clusters using two-phase immersion cooling approach, and demonstrate its potential benefits over the air-based natural and forced convection approaches. ARM-based clusters were created using Raspberry Pi model 2 and 3, a commodity-level, single-board computer. Immersion cooling mode utilized two types of dielectric liquids, HFE-7000 and HFE-7100. Experiments involved running benchmarking tests Sysbench high performance linpack (HPL), and the combination of both in order to quantify the key parameters of device junction temperature, frequency, execution time, computing performance, and energy consumption. Results indicated that the device core temperature has direct effects on the computing performance and energy consumption. In the reference, natural convection cooling mode, as the temperature raised, the cluster started to decease its operating frequency to save the internal cores from damage. This resulted in decline of computing performance and increase of execution time, further leading to increase of energy consumption. In more extreme cases, performance of the cluster dropped by 4X, while the energy consumption increased by 220%. This study therefore demonstrated that two-phase immersion cooling method with its near-isothermal, high heat transfer capability would enable fast, energy efficient, and reliable operation, particularly benefiting high performance computing applications where …
Date: August 2017
Creator: Mohammed, Awaizulla Shareef
System: The UNT Digital Library
Development of a Simplified Fracture Toughness Tool for Polymers (open access)

Development of a Simplified Fracture Toughness Tool for Polymers

This thesis presents research toward the development of a simple inexpensive fracture toughness tool for polymeric materials. Experiments were conducted to test the specimen configuration and the fracture toughness tool against an established ASTM standard for polymer fracture toughness, D5045, and a commonly used four-point bend method. The materials used in this study were polycarbonate and high density polyethylene. Reductions in both the production time and the variability resulting from the preparation of the specimens were addressed through the use of specially designed fixtures. The effects from the razor cut depths used in the chevron notch were compared to the fracture toughness values obtained in order to determine the effect upon the validity of the fracture toughness.
Date: August 1997
Creator: Marnock, Patrick J. (Patrick Joseph)
System: The UNT Digital Library
Characterization of Boron Nitride Thin Films on Silicon (100) Wafer. (open access)

Characterization of Boron Nitride Thin Films on Silicon (100) Wafer.

Cubic boron nitride (cBN) thin films offer attractive mechanical and electrical properties. The synthesis of cBN films have been deposited using both physical and chemical vapor deposition methods, which generate internal residual, stresses that result in delamination of the film from substrates. Boron nitride films were deposited using electron beam evaporation without bias voltage and nitrogen bombardment (to reduce stresses) were characterize using FTIR, XRD, SEM, EDS, TEM, and AFM techniques. In addition, a pin-on-disk tribological test was used to measure coefficient of friction. Results indicated that samples deposited at 400°C contained higher cubic phase of BN compared to those films deposited at room temperature. A BN film containing cubic phase deposited at 400°C for 2 hours showed 0.1 friction coefficient.
Date: August 2007
Creator: Maranon, Walter
System: The UNT Digital Library

Modeling and Analysis of Prototype Shelter Structure on Abaqus

Due to the constraint of high costs and limitations of load conditions, experimental testing is not appropriate for the static study of shelter structures. Comparatively, an effective computational modeling and numerical solution demonstrates significant advantages for understanding the response of steel shelter structures. This study gives an insight into the structural integrity of the prototype shelter structure which is examined using computer simulation of the shelter structure on Abaqus/CAE 2019. The results of the computer modelling demonstrate the response of shelter structure under ten different loading conditions as per ISO 1496:2013 (E). The loading conditions are applied to various components of the shelter structure and corresponding deflection are observed.
Date: August 2020
Creator: Rao, Noraiz
System: The UNT Digital Library
FEM of nanoindentation on micro- and nanocrystalline Ni: Analysis of factors affecting hardness and modulus values. (open access)

FEM of nanoindentation on micro- and nanocrystalline Ni: Analysis of factors affecting hardness and modulus values.

Nanoindentation is a widely used technique to measure the mechanical properties of films with thickness ranging from nanometers to micrometers. A much better understanding of the contact mechanics is obtained mostly through finite element modeling. The experiments were modeled using the software package Nano SP1 that is based on COSMOSM™ (Structural Research & Analysis Corp, www.cosmosm.com), a finite element code. The fundamental material properties affecting pile-up are the ratio of the effective modulus to yield stress Eeff/σ and the work hardening behavior. Two separate cases of work hardening rates were considered; one with no work hardening rate and other with a linear work hardening rate. Specifically, it is observed that pile up is large only when hf/hmax is close to one and degree of work hardening rate is small. It should also be noted that when hf/hmax < 0.7 very little pile-up is observed no matter what the work-hardening behavior of the material. When pile-up occurs the contact area is greater than that predicted by the experimental methods and both the hardness and modulus are overestimated. In this report the amount by which these properties are overestimated are studied and got to be around 22% approx. Bluntness of the tip …
Date: August 2005
Creator: Pothapragada, Raja Mahesh
System: The UNT Digital Library

Design Method for Cold-Formed Steel Shear Wall Sheathed with Polymer Composite Panel

In order to predict the strength of shear wall with cold-formed steel framing members, analytical models were reviewed. Multiple analytical models were studied, as well as twenty-one connection tests were performed. The connection tests consist of 50-ksi cold-formed steel framing track, different fastening configurations, and different sheathing thicknesses (1/8" and 1/2"). No.12 screw resulted in the highest peak load of all fastening configurations, while the rivet connection had the lowest peak load. In addition, failure modes were observed after conducting the connection tests including shear in fastening, screw pullout, and bearing in the sheathing. However, only the rivet and No.10 screw fastening configurations were used in the prediction analysis of the shear wall by the elastic model. Six shear wall tests were conducted on both panels (1/2"and 1/8" thickness). After doing the comparison between the experimental and the elastic model, the percentage difference for the 1/8" and the 1/2" polymer composite panels (3''along the edge and 6''along the chord stud), was very small. It was 6.2% for the 1/8" and 2.96% for the 1/2" panels. This means the analytical model can predict the shear wall peak load. However, the percentage difference was slightly higher being 7.4% for the 1/2" polymer …
Date: August 2020
Creator: Dewaidi, Mohaned Ali
System: The UNT Digital Library
Hydrophobicity of Magnetite Coating on Low Carbon Steel (open access)

Hydrophobicity of Magnetite Coating on Low Carbon Steel

Superhydrophobic coatings (SHC) with excellent self-cleaning and corrosion resistance property is developed on magnetite coated AISI SAE 1020 steel by using a simple immersion method. Roughness measurement, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), contact angle measurement (CAM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), potentiodynamic polarization test, electrochemical impedance spectroscopy (EIS), and qualitative characterization of self-cleaning behavior, antifouling property and durability of the coatings are assessed. A water contact angle as high as 152o on the coated surface with excellent self-cleaning and resistivity to corrosion and good longevity in atmospheric air is obtained. Self-cleaning test results prove that these surfaces can find applications in large scale production of engineering materials. Potentiodynamic polarization tests and EIS tests confirm that the superhydrophobic low carbon steel surfaces have better resistance to corrosion compared to bare steel and magnetite coated steel in 3.5% NaCl solution. But the longevity of the coated steel surfaces in 3.5% salt solution is limited, which is revealed by the immersion durability test. However, hydrophobic coatings (HC) have better stability in normal tap water, and it can stay unharmed up to 15 days. Finally, hydrophobic coatings on low carbon steel surface retains hydrophobic …
Date: August 2018
Creator: Akhtar, Mst Alpona
System: The UNT Digital Library