O-Acetylserine Sulhydralase-A from Salmonella typhimurium LT-2: Thermodynamic Properties and SPectral Identification of Intermediates (open access)

O-Acetylserine Sulhydralase-A from Salmonella typhimurium LT-2: Thermodynamic Properties and SPectral Identification of Intermediates

O-Acetylserine Sulfhydrylase (OASS) is a pyridoxal phosphate enzyme that catalyzes the reaction of O-acetyl-Lserine with sulfide to give L-cysteine. OASS is present as two isoforms, designated -A and -B. The kinetic mechanism of OASS-A is well known and there is also much known concerning the acid-base chemistry of the enzyme. However, little is known concerning the location of the rate determining steps, the sequencing of chemical steps that occur at the active site, or the nature of the rate determining transition states. The studies performed to help elucidate these aspects of the OASS-A mechanism included determination of the thermodynamics of both half reactions, along with studies utilizing substrate analogs of OAS halting the reaction at specific points along the reaction pathway allowing the identification of reaction intermediates. The free energy change of the first half reaction was shown to be -5.7 Kcal/mole while the second half reaction was shown to be, for all intents and purposes, irreversible. Intermediates along the reaction pathway that have been previously identified include the internal Schiff base and the a-aminoacrylate. The external Schiff base was identified using the analogs cysteine, alanine, and glycine while the geminal diamine was identified using the analog serine. Formation of …
Date: August 1993
Creator: Simmons, James Walter
System: The UNT Digital Library
N-Acylethanolamine Metabolism During Seed Germination: Molecular Identification of a Functional N-Acylethanolamine Amidohydrolase (open access)

N-Acylethanolamine Metabolism During Seed Germination: Molecular Identification of a Functional N-Acylethanolamine Amidohydrolase

N-Acylethanolamines (NAEs) are endogenous lipid metabolites that occur in a variety of dry seeds, and their levels decline rapidly during the first few hours of imbibition (Chapman et al., 1999, Plant Physiol., 120:1157-1164). Biochemical studies supported the existence of an NAE amidohydrolase activity in seeds and seedlings, and efforts were directed toward identification of DNA sequences encoding this enzyme. Mammalian tissues metabolize NAEs via an amidase enzyme designated fatty acid amide hydrolase (FAAH). Based on the characteristic amidase signature sequence in mammalian FAAH, a candidate Arabidopsis cDNA was identified and isolated by reverse transcriptase-PCR. The Arabidopsis cDNA was expressed in E. coli and the recombinant protein indeed hydrolyzed a range of NAEs to free fatty acids and ethanolamine. Kinetic parameters for the recombinant protein were consistent with those properties of the rat FAAH, supporting identification of this Arabidopsis cDNA as a FAAH homologue. Two T-DNA insertional mutant lines with disruptions in the Arabidopsis NAE amidohydrolase gene (At5g64440) were identified. The homozygous mutant seedlings were more sensitive than the wild type to exogenously applied NAE 12:0. Transgenic seedlings overexpressing the NAE amidohydrolase enzyme showed noticeably greater tolerance to NAE 12:0 than wild type seedlings. These results together provide evidence in vitro …
Date: August 2004
Creator: Shrestha, Rhidaya
System: The UNT Digital Library
N-Acylethanolamine (NAE) Profiles Change During Arabidopsis Thaliana Seed Germination and Seedling Growth (open access)

N-Acylethanolamine (NAE) Profiles Change During Arabidopsis Thaliana Seed Germination and Seedling Growth

An understanding of the potential roles as lipid mediators of a family of bioactive metabolites called N-acylethanolamines (NAEs) depends on their accurate identification and quantification. The levels of 18C unsaturated NAEs (e.g. NAE18:2, NAE 18:3, etc.) in wild-type seeds (about 2000 ng/g fw) generally decreased by about 80% during germination and post-germinative growth. In addition, results suggest NAE-degradative fatty acid amide hydrolase (FAAH) expression does not play a major role in normal NAE metabolism as previously thought. Seedlings germinated and grown in the presence of abscisic acid (ABA), an endogenous plant hormone, exhibited growth arrest and secondary dormancy, similar to the treatment of seedlings with exogenous N­lauroylethanolamine (NAE12:0). ABA-mediated growth arrest was associated with higher levels of unsaturated NAEs. Overall, these results are consistent with the concept that NAE metabolism is activated during seed germination and suggest that the reduction in unsaturated NAE levels is under strict temporal control and may be a requirement for normal seed germination and post-germinative growth.
Date: August 2006
Creator: Wiant, William C.
System: The UNT Digital Library
Alternate Substrates and Isotope Effects as a Probe of the Malic Enzyme Reaction (open access)

Alternate Substrates and Isotope Effects as a Probe of the Malic Enzyme Reaction

Dissociation constants for alternate dirmcleotide substrates and competitive inhibitors suggest that the dinucleotide binding site of the Ascaris suum NAD-malic enzyme is hydrophobic in the vicinity of the nicotinamide ring. Changes in the divalent metal ion activator from Mg^2+ to Mn^2+ or Cd^2+ results in a decrease in the dinucleotide affinity and an increase in the affinity for malate. Primary deuterium and 13-C isotope effects obtained with the different metal ions suggest either a change in the transition state structure for the hydride transfer or decarboxylation steps or both. Deuterium isotope effects are finite whether reactants are maintained at saturating or limiting concentrations with all the metal ions and dinucleotide substrates used. With Cd^2+ as the divalent metal ion, inactivation of the enzyme occurs whether enzyme alone is present or is turning over. Upon inactivation only Cd^2+ ions are bound to the enzyme which becomes denatured. Modification of the enzyme to give an SCN-enzyme decreases the ability of Cd^2+ to cause inactivation. The modified enzyme generally exhibits increases in K_NAD and K_i_metai and decreases in V_max as the metal size increases from Mg^2+ to Mn^2+ or Cd^2+, indicative of crowding in the site. In all cases, affinity for malate greatly …
Date: August 1988
Creator: Gavva, Sandhya Reddy
System: The UNT Digital Library
Analysis of a Human Transfer RNA Gene Cluster and Characterization of the Transcription Unit and Two Processed Pseudogenes of Chimpanzee Triosephosphate Isomerase (open access)

Analysis of a Human Transfer RNA Gene Cluster and Characterization of the Transcription Unit and Two Processed Pseudogenes of Chimpanzee Triosephosphate Isomerase

An 18.5-kb human DNA segment was selected from a human XCharon-4A library by hybridization to mammalian valine tRNAiAc and found to encompass a cluster of three tRNA genes. Two valine tRNA genes with anticodons of AAC and CAC, encoding the major and minor cytoplasmic valine tRNA isoacceptors, respectively, and a lysine tRNAcuu gene were identified by Southern blot hybridization and DNA sequence analysis of a 7.1-kb region of the human DNA insert. At least nine Alu family members were found interspersed throughout the human DNA fragment. The tRNA genes are accurately transcribed by RNA polymerase III in a HeLa cell extract, since the RNase Ti fingerprints of the mature-sized tRNA transcription products are consistent with the DNA sequences of the structural genes. Three members of the chimpanzee triosephosphate isomerase (TPI) gene family, the functional transcription unit and two processed pseudogenes, were characterized by genomic blotting and DNA sequence analysis. The bona fide TPI gene spans 3.5 kb with seven exons and six introns, and is the first complete hominoid TPI gene sequenced. The gene exhibits a very high identity with the human and rhesus TPI genes. In particular, the polypeptides of 248 amino acids encoded by the chimpanzee and human …
Date: August 1990
Creator: Craig, Leonard C. (Leonard Callaway)
System: The UNT Digital Library
Application of Synthetic Peptides as Substrates for Reversible Phosphorylation (open access)

Application of Synthetic Peptides as Substrates for Reversible Phosphorylation

Two highly homologous synthetic peptides MLC(3-13) (K-R-A-K-A-K-T-TK-K-R-G) and MLC(5-13) (A-K-A-K-T-T-K-K-R-G) corresponding to the amino terminal amino acid sequence of smooth muscle myosin light chain were utilized as substrates for protein kinase C purified from murine lymphosarcoma tumors to determine the role of the primary amino acid sequence of protein kinase C substrates in defining the lipid (phosphatidyl serine and diacylglycerol) requirements for the activation of the enzyme. Removal of the basic residues lysine and arginine from the amino terminus of MLC(3-13) did not have a significant effect on the Ka value of diacylglycerol. The binding of effector to calcium-protein kinase C appears to be random since binding of one effector did not block the binding of the other.
Date: August 1992
Creator: Abukhalaf, Imad Kazem
System: The UNT Digital Library
Changes in Body Composition, Plasma Alanine, and Urinary Nitrogen in Rats Subjected to Negative Caloric Balance Through Diet, Diet/Exercise, and Exercise (open access)

Changes in Body Composition, Plasma Alanine, and Urinary Nitrogen in Rats Subjected to Negative Caloric Balance Through Diet, Diet/Exercise, and Exercise

Male Fischer rats (n=43) were used in a diet-diet/ exercise design to investigate the apparent protein sparing effects of exercise. The animals were divided into five groups: INITIAL (baseline), SEDENTARY (control), DIET, DIET/EXERCISE, and EXERCISE. Carcasses were analyzed for body composition, the blood for plasma alanine concentration and the urine for urea nitrogen concentration. The results showed no significant differences between groups in urinary urea nitrogen, plasma alanine, body weight, or carcass weights. The EXERCISE group had a significant increase in percent protein and a significant decrease in percent fat and grams of fat when compared to all other groups (p <.05).
Date: August 1982
Creator: Ayres, John J. (John Jay)
System: The UNT Digital Library
Development of Enabling Technologies to Visualize the Plant Lipidome (open access)

Development of Enabling Technologies to Visualize the Plant Lipidome

Improvements in mass spectrometry (MS)-based strategies for characterizing the plant lipidome through quantitative and qualitative approaches such as shotgun lipidomics have substantially enhanced our understanding of the structural diversity and functional complexity of plant lipids. However, most of these approaches require chemical extractions that result in the loss of the original spatial context and cellular compartmentation for these compounds. To address this current limitation, several technologies were developed to visualize lipids in situ with detailed chemical information. A subcellular visualization approach, direct organelle MS, was developed for directly sampling and analyzing the triacylglycerol contents within purified lipid droplets (LDs) at the level of a single LD. Sampling of single LDs demonstrated seed lipid droplet-to-droplet variability in triacylglycerol (TAG) composition suggesting that there may be substantial variation in the intracellular packaging process for neutral lipids in plant tissues. A cellular and tissue visualization approach, MS imaging, was implemented and enhanced for visualizing the lipid distributions in oilseeds. In mature cotton seed embryos distributions of storage lipids (TAGs) and their phosphatidylcholine (PCs) precursors were distribution heterogeneous between the cotyledons and embryonic axis raising new questions about extent and regulation of oilseed heterogeneity. Extension of this methodology provides an avenue for understanding metabolism …
Date: August 2013
Creator: Horn, Patrick J.
System: The UNT Digital Library
Fluorescence labeling and computational analysis of the strut of myosin's 50 kDa cleft. (open access)

Fluorescence labeling and computational analysis of the strut of myosin's 50 kDa cleft.

In order to understand the structural changes in myosin S1, fluorescence polarization and computational dynamics simulations were used. Dynamics simulations on the S1 motor domain indicated that significant flexibility was present throughout the molecular model. The constrained opening versus closing of the 50 kDa cleft appeared to induce opposite directions of movement in the lever arm. A sequence called the "strut" which traverses the 50 kDa cleft and may play an important role in positioning the actomyosin binding interface during actin binding is thought to be intimately linked to distant structural changes in the myosin's nucleotide cleft and neck regions. To study the dynamics of the strut region, a method of fluorescent labeling of the strut was discovered using the dye CY3. CY3 served as a hydrophobic tag for purification by hydrophobic interaction chromatography which enabled the separation of labeled and unlabeled species of S1 including a fraction labeled specifically at the strut sequence. The high specificity of labeling was verified by proteolytic digestions, gel electrophoresis, and mass spectroscopy. Analysis of the labeled S1 by collisional quenching, fluorescence polarization, and actin-activated ATPase activity were consistent with predictions from structural models of the probe's location. Although the fluorescent intensity of the …
Date: August 2007
Creator: Gawalapu, Ravi Kumar
System: The UNT Digital Library
Functional Significance of Sympathetic Fiber Ingrowth in the Habenula (open access)

Functional Significance of Sympathetic Fiber Ingrowth in the Habenula

The physiological significance of noradrenergic sympathohabenular ingrowth following medial septal lesions was investigated. Following septal lesions, sympathetic fibers originating in the superior cervical ganglia are known to sprout into the medial habenular nuclei, and into the hippocampal formation. Previous work involving sympathohippocampal ingrowth showed that firing rates in septal animals with no ingrowth showed that firing rates in septal animals with no ingrowth were higher than rates of septal animals with ingrowth and controls. Those results suggested that sympathetic ingrowth in the hippocampus had some functional capability in a modulatory manner. The primary aim of the present study was to determine if the peripheral sympathetic ingrowth into the medial habenular nuclei following a septal lesion is functionally significant. The results showed that firing rates of neurons of the medial habenulae in animals receiving septal lesions were significantly higher than rates of control animals and septal lesioned + ganglionectomized animals.
Date: August 1986
Creator: Howard, A. Jean (Ava Jean)
System: The UNT Digital Library
Gene Expression Profiling of the nip Mutant in Medicago truncatula (open access)

Gene Expression Profiling of the nip Mutant in Medicago truncatula

The study of root nodule symbiosis between nitrogen-fixing bacteria and leguminous plant species is important because of the ability to supplement fixed nitrogen fertilizers and increase plant growth in poor soils. Our group has isolated a mutant called nip in the model legume Medicago truncatula that is defective in nodule symbiosis. The nip mutant (numerous infections with polyphenolics) becomes infected by Sinorhizobium meliloti but then accumulates polyphenolic defense compounds in the nodule and fails to progress to a stage where nitrogen fixation can occur. Analysis of the transcriptome of nip roots prior to inoculation with rhizobia was undertaken using Affymetric Medicago Genome Array microarrays. The total RNA of 5-day old uninoculated seedlings was analyzed in triplicate to screen for the NIP gene based on downregulated transcript levels in the mutant as compared to wild type. Further microarray data was generated from 10 days post inoculation (dpi) nip and wild type plants. Analysis of the most highly downregulated transcripts revealed that the NIP gene was not identifiable based on transcript level. Putative gene function was assigned to transcripts with altered expression patterns in order to characterize the nip mutation phenotypically as inferred from the transcriptome. Functional analysis revealed a large number …
Date: August 2007
Creator: McKethan, Brandon Lee
System: The UNT Digital Library
In Vitro Modulation of Rat Liver Glyoxalase II Activity (open access)

In Vitro Modulation of Rat Liver Glyoxalase II Activity

Glyoxylase II (Glo II, E.C. 3.1.2.6) catalyzes the hydrolysis of S-D-Lactoylglutathione (SLG) to D-Lactate and glutathione. This is the rate limiting step in the conversion of methylglyoxal to D-Lactate. The purpose of the present study was to determine whether or not a relationship exists between some naturally occuring metabolites and in vivo modulation of Glo II. We have observed a non-competitive inhibition (~ 45%) of Glo II in crude preparation of rat liver by GTP (0.3 mM). A factor (apparently protein),devoid of Glo II,when reconstituted with the purified Glo II, enhanced Glo II activity. This coordinate activation and inhibition of Glo II suggest a mechanism whereby SLG levels can be modulated in vivo.
Date: August 1988
Creator: Mbamalu, Godwin E.
System: The UNT Digital Library
Induced CSF-1 Production and its Effects on C-FMS Transfected Monoblastic U937 Cells (open access)

Induced CSF-1 Production and its Effects on C-FMS Transfected Monoblastic U937 Cells

This study examined how the monoblast-like human histiocytic lymphoma cell line U937 can be induced by phorbol 12-myristrate 13-acetate (PMA) to undergo differentiation. In order to study the mechanism of action of CSF-1, a CSF-1 receptor gene (c-fms) was transfected into U937 cells. Exogenous CSF-1 treatment induced an autocrine response in this CSF-1 was determined and all events were shown to be time dependent. CSF-1 stimulation also enhanced proto-oncogene c-jun and c-myc gene expression. Complementary DNA coding for Jun or Fos was introduced into U937 cells by transfection. The transfection did not generate a high level of CSF-1 gene expression which suggests that Fos and Jun alone are insufficient to induce CSF-1 synthesis.
Date: August 1992
Creator: Liu, Mu-ya
System: The UNT Digital Library
Interactions of N-Acylethanolamine Metabolism and Abscisic Acid Signaling in Arabidopsis Thaliana Seedlings (open access)

Interactions of N-Acylethanolamine Metabolism and Abscisic Acid Signaling in Arabidopsis Thaliana Seedlings

N-Acylethanolamines (NAEs) are endogenous plant lipids hydrolyzed by fatty acid amide hydrolase (FAAH). When wildtype Arabidopsis thaliana seeds were germinated and grown in exogenous NAE 12:0 (35 µM and above), growth was severely reduced in a concentration dependent manner. Wildtype A. thaliana seeds sown on exogenous abscisic acid (ABA) exhibited similar growth reduction to that seen with NAE treatment. AtFAAH knockouts grew and developed similarly to WT, but AtFAAH overexpressor lines show markedly enhanced sensitivity to ABA. When low levels of NAE and ABA, which have very little effect on growth alone, were combined, there was a dramatic reduction in seedling growth in all three genotypes, indicating a synergistic interaction between ABA and NAE. Notably, this synergistic arrest of seedling growth was partially reversed in the ABA insensitive (abi) mutant abi3-1, indicating that a functional ABA signaling pathway is required for the full synergistic effect. This synergistic growth arrest results in an increased accumulation of NAEs, but no concomitant increase in ABA levels. The combined NAE and ABA treatment induced a dose-dependent increase in ABI3 transcript levels, which was inversely related to growth. The ABA responsive genes AtHVA22B and RD29B also had increased expression in both NAE and ABA treatment. …
Date: August 2010
Creator: Cotter, Matthew Q.
System: The UNT Digital Library
Kinetic and Chemical Mechanism of O-Acetylserine Sulfhydrylase-B from Salmonella Typhimurium (open access)

Kinetic and Chemical Mechanism of O-Acetylserine Sulfhydrylase-B from Salmonella Typhimurium

Initial velocity studies of O-acetylserine sulfhydrylase-B (OASS-B) from Salmonella typhimurium using both natural and alternative substrates suggest a Bi Bi ping pong kinetic mechanism with double substrate competitive inhibition. The ping pong mechanism is corroborated by a qualitative and quantitative analysis of product and dead-end inhibition. Product inhibition by acetate is S-parabolic noncompetitive, indication of a combination of acetate with E followed by OAS. These data suggest some randomness to the OASS-B kinetic mechanism. The pH dependence of kinetic parameters was determined in order to obtain information on the acid-base chemical mechanism for the OASS-B reaction. A mechanism is proposed in which an enzyme general base accepts a proton from α-amine of O-acetylserine, while a second enzyme general base acts by polarizing the acetyl carbonyl assisting in the β-elimination of the acetyl group of O-acetylserine. The ε-amine of the active site lysine acts as a general base to abstract the α-proton in the β-elimination of acetate. At the end of the first half reaction the ε-amine of the active site lysine that formed the internal Schiff base and the general base are protonated. The resulting α-aminoacrylate intermediate undergoes a Michael addition with HS‾ and the active site lysine donates its …
Date: August 1993
Creator: Tai, Chia-Hui
System: The UNT Digital Library
Manipulating Sucrose Proton Symporters to Understand Phloem Loading (open access)

Manipulating Sucrose Proton Symporters to Understand Phloem Loading

Phloem vascular tissues transport sugars synthesized by photosynthesis in mature leaves by a process called phloem loading in source tissues and unloading in sink tissues. Phloem loading in source leaves is catalyzed by Suc/H+ symporters (SUTs) which are energized by proton motive force. In Arabidopsis the principal and perhaps exclusive SUT catalyzing phloem loading is AtSUC2. In mutant plants harboring a T-DNA insertion in each of the functional SUT-family members, only Atsuc2 mutants demonstrate overtly debilitated phloem transport. Analysis of a mutant allele (Atsuc2-4) of AtSUC2 with a T-DNA insertion in the second intron showed severely stunted phenotype similar to previously analyzed Atsuc2 null alleles. However unlike previous alleles Atsuc2-4 produced viable seeds. Analysis of phloem specific promoters showed that promoter expression was regulated by Suc concentration. Unlike AtSUC2p, heterologous promoter CoYMVp was not repressed under high Suc conc. Further analysis was conducted using CoYMVp to test the capacity of diverse clades in SUT-gene family for transferring Suc in planta in Atsuc2 - / - mutant background. AtSUC1 and ZmSUT1 from maize complemented Atsuc2 mutant plants to the highest level compared to all other transporters. Over-expression of the above SUTs in phloem showed enhanced Suc loading and transport, but against …
Date: August 2013
Creator: Dasgupta, Kasturi
System: The UNT Digital Library
Metabolic Engineering of Raffinose-Family Oligosaccharides in the Phloem Reveals Alterations in Patterns of Carbon Partitioning and Enhances Resistance to Green Peach Aphid (open access)

Metabolic Engineering of Raffinose-Family Oligosaccharides in the Phloem Reveals Alterations in Patterns of Carbon Partitioning and Enhances Resistance to Green Peach Aphid

Phloem transport is along hydrostatic pressure gradients generated by differences in solute concentration between source and sink tissues. Numerous species accumulate raffinose-family oligosaccharides (RFOs) in the phloem of mature leaves to accentuate the pressure gradient between source and sinks. In this study, metabolic engineering was used to generate RFOs at the inception of the translocation stream of Arabidopsis thaliana, which transports predominantly sucrose. To do this, three genes, GALACTINOL SYNTHASE, RAFFINOSE SYNTHASE and STACHYOSE SYNTHASE, were expressed from promoters specific to the companion cells of minor veins. Two transgenic lines homozygous for all three genes (GRS63 and GRS47) were selected for further analysis. Sugars were extracted and quantified by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), and 21-day old plants of both lines had levels of galactinol, raffinose, and stachyose approaching 50% of total soluble sugar. All three exotic sugars were also identified in phloem exudates from excised leaves of transgenic plants whereas levels were negligible in exudates from wild type leaves. Differences in starch accumulation or degradation between wild type and GRS63 and GRS47 lines were not observed. Similarly, there were no differences in vegetative growth between wild type and engineered plants, but engineered plants flowered …
Date: August 2010
Creator: Cao, Te
System: The UNT Digital Library
Noncovalent Crosslinking of SH1 and SH2 to Detect Dynamic Flexibility of the SH1 Helix (open access)

Noncovalent Crosslinking of SH1 and SH2 to Detect Dynamic Flexibility of the SH1 Helix

In this experiment, fluorescent N- (1-pyrenyl) iodoacetamide modified the two reactive thiols, SH1 (Cys 707) and SH2 (Cys 697) on myosin to detect SH1-SH2 a -helix melting. The excimer forming property of pyrene is well suited to monitor the dynamics of the SH1 and SH2 helix melting, since the excimer should only form during the melted state. Decreased anisotropy of the excimer relative to the monomeric pyrene fluorescence is consistent with the disordering of the melted SH1-SH2 region in the atomic model. Furthermore, nucleotide analogs induced changes in the anisotropy of the excimer, suggesting that the nucleotide site modulates the flexibility of SH1-SH2 region.
Date: August 2000
Creator: Park, Hyunguk
System: The UNT Digital Library
NSAID effect on prostanoids in fishes: Prostaglandin E2 levels in bluntnose minnows (Pimephales notatus) exposed to ibuprofen. (open access)

NSAID effect on prostanoids in fishes: Prostaglandin E2 levels in bluntnose minnows (Pimephales notatus) exposed to ibuprofen.

Prostanoids are oxygenated derivatives of arachidonic acid with a wide range of physiological effects in vertebrates including modulation of inflammation and innate immune responses. Nonsteroidal anti-inflammatory drugs (NSAIDs) act through inhibition of cyclooxygenase (COX) conversion of arachidonic acid to prostanoids. In order to better understand the potential of environmental NSAIDS for interruption of normal levels COX products in fishes, we developed an LC/MS/MS-based approach for tissue analysis of 7 prostanoids. Initial studies examining muscle, gut and gill demonstrated that prostaglandin E2 (PGE2) was the most abundant of the measured prostanoids in all tissues and that gill tissue had the highest and most consistent concentrations of PGE2. After short-term 48-h laboratory exposures to concentrations of 5, 25, 50 and 100 ppb ibuprofen, 50.0ppb and 100.0 ppb exposure concentrations resulted in significant reduction of gill tissue PGE2 concentration by approximately 30% and 80% respectively. The lower exposures did not result in significant reductions when compared to unexposed controls. Measured tissue concentrations of ibuprofen indicated that this NSAID had little potential for bioaccumulation (BCF 1.3) and the IC50 of ibuprofen for inhibition of PGE2 production in gill tissue was calculated to be 0.4 µM. Short-term laboratory exposure to ibuprofen did not result in …
Date: August 2009
Creator: Bhandari, Khageshor
System: The UNT Digital Library
The Nucleotide Sequences of a Mammalian Tyrosine Transfer RNA and a Cluster of Human Transfer RNA Genes (open access)

The Nucleotide Sequences of a Mammalian Tyrosine Transfer RNA and a Cluster of Human Transfer RNA Genes

Tyrosine tRNA was isolated from bovine liver and its nucleotide sequence was determined using in vitro 32p_ labeling techniques. Several important structural features of the tRNA are: the presence of gal-Q in the first position of the anticodon, acp3U at position 20, and a pair of adjacent N,N-dimethylguanosines (residues 26 and 27). A human DNA fragment harbored in a lambda phage clone was isolated, and restriction enzyme analysis revealed the presence of three tRNA genes in a 6.0-kb BamHI subfragment. Portions of the 6.0-kb DNA fragment containing the tRNA genes were sequenced by the method of Maxam and Gilbert and analyzed for transcriptional activity in vitro using homologous cytoplasmic extracts. A threonine tRNAUGU gene exhibited high transcriptional activity dependent on its 5'- flanking sequence. The enhanced transcription is not completely inhibited by alpha-amanitin. The value of studying tRNA structure in concert with the cognate tRNA. genes is discussed.
Date: August 1986
Creator: Johnson, Gary D. (Gary Dean), 1960-
System: The UNT Digital Library
Palmitoyl-acyl Carrier Protein Thioesterase in Cotton (Gossypium hirsutum L.): Biochemical and Molecular Characterization of a Major Mechanism for the Regulation of Palmitic Acid Content (open access)

Palmitoyl-acyl Carrier Protein Thioesterase in Cotton (Gossypium hirsutum L.): Biochemical and Molecular Characterization of a Major Mechanism for the Regulation of Palmitic Acid Content

The relatively high level of palmitic acid (22 mol%) in cottonseeds may be due in part to the activity of a palmitoyl-acyl carrier protein (ACP) thioesterase (PATE). In embryo extracts, PATE activity was highest at the maximum rate of reserve accumulation (oil and protein). The cotton FatB mRNA transcript abundance also peaked during this developmental stage, paralleling the profiles of PATE enzyme activity and seed oil accumulation. A cotton FatB cDNA clone was isolated by screening a cDNA library with a heterologous Arabidopsis FatB probe (Pirtle et al., 1999, Plant and Cell Physiology 40: 155-163). The predicted amino acid sequence of the cotton PATE preprotein had 63% identity to the Arabidopsis FatB thioesterase sequence, suggesting that the cotton cDNA clone probably encoded a FatB-type thioesterase. When acyl-CoA synthetase-minus E. coli mutants expressed the cotton cDNA, an increase in 16:0 free fatty acid content was measured in the culture medium. In addition, acyl-ACP thioesterase activity assays in E. coli lysates revealed that there was a preference for palmitoyl-ACP over oleoyl-ACP in vitro, indicating that the cotton putative FatB cDNA encoded a functional thioesterase with a preference for saturated acyl-ACPs over unsaturated acyl-ACPs (FatA). Overexpression of the FatB cDNA in transgenic cotton …
Date: August 2001
Creator: Huynh, Tu T
System: The UNT Digital Library
pH Dependence of the Kinetic Parameters for the Oxalacetate Decarboxylation and Pyruvate Reduction Reactions Catalyzed by Malic Enzyme (open access)

pH Dependence of the Kinetic Parameters for the Oxalacetate Decarboxylation and Pyruvate Reduction Reactions Catalyzed by Malic Enzyme

Ascaris suum NAD-malic enzyme catalyzes the decarboxylation of oxalacetate and reduction of pyruvate. Thus, the present classification (E.C. 1.1.1.39) for this enzyme should be changed to E.C. 1.1.1.38. In the absence of nucleotide, both the chicken liver NADP-malic enzyme and Ascaris suum NAD-malic enzymes catalyze the decarboxylation of oxalacetate. A study of the pH dependence of kinetic parameters for oxalacetate decarboxylation and pyruvate reduction was carried out for the NAD(P)-malic enzyme with Mg^2+ and Mn^2+ in the presence and absence of nucleotide. In all cases, an enzyme residue is required in its protonated form for reaction while for oxalacetate decarboxylation the β-carboxyl of oxalacetate is required unprotonated. Of a number of inhibitory binding analogs of malate tested, oxalate is the tightest binding inhibitor for Ascaris suum enzyme.
Date: August 1985
Creator: Park, Sang-Hoon
System: The UNT Digital Library
Physical, Chemical and Catalytic Properties of the Isozymes of Bovine Glucose Phosphate Isomerase (open access)

Physical, Chemical and Catalytic Properties of the Isozymes of Bovine Glucose Phosphate Isomerase

Glucose phosphate isomerase (GPI) occurs in different bovine tissues as multiple, catalytically active isozymes which can be resolved by polyacrylamide gel electrophoresis and isoelectric focusing. GPI from bovine heart was purified to homogeneity and each of the isozymes was resolved. Four of the five isozymes were characterized with regard to their physical, chemical and catalytic properties in order to establish their possible physiological significance and to ascertain their molecular basis. The isozymes exhibited identical native (118 Kd) and subunit (59 Kd) molecular weights but had different apparent pi values of 7.2, 7.0, 6.8 and 6.6. Structural analyses showed that the amino terminus was blocked and the carboxyl terminal sequence was -Glu-Ala-Ser-Gly for all four isozymes. The most basic isozyme was more stable than the more acidic isozymes (lower pi values) at pH extremes, at high ionic strength, in the presence of denaturants or upon exposure to proteases. Kinetic constants, such as turnover number, Km and Ki values, were identical for all isozymes. Identical amino acid composition and peptide mapping by chemical cleavage at methionine and cysteine residues of the isozymes suggest a postsynthetic modification rather then a genetic origin for the in vivo isozymes. When the most basic isozyme was …
Date: August 1987
Creator: Cini, John Kenneth
System: The UNT Digital Library
Plastidial carbonic anhydrase in cotton (Gossypium hirsutum L.): characterization, expression, and role in lipid biosynthesis (open access)

Plastidial carbonic anhydrase in cotton (Gossypium hirsutum L.): characterization, expression, and role in lipid biosynthesis

Recently, plastidial carbonic anhydrase (CA, EC 4.2.1.1) cDNA clones encoding functional CA enzymes were isolated from a nonphotosynthetic cotton tissue. The role of CA in photosynthetic tissues have been well characterized, however there is almost no information for the role of CA in nonphotosynthetic tissues. A survey of relative CA transcript abundance and enzyme activity in different cotton organs revealed that there was substantial CA expression in cotyledons of seedlings and embryos, both nonphotosynthetic tissues. To gain insight into the role(s) of CA, I examined CA expression in cotyledons of seedlings during post-germinative growth at different environmental conditions. CA expression in cotyledons of seedlings increased from 18 h to 72 h after germination in the dark. Seedlings exposed to light had about a 2-fold increase in CA activities when compared with seedlings kept in the dark, whereas relative CA transcript levels were essentially the same. Manipulation of external CO2 environments [zero, ambient (350 ppm), or high (1000 ppm)] modulated coordinately the relative transcript abundance of CA (and rbcS) in cotyledons, but did not affect enzyme activities. On the other hand, regardless of the external CO2 conditions seedlings exposed to light exhibited increase CA activity, concomitant with Rubisco activity and increased …
Date: August 2001
Creator: Hoang, Chau V.
System: The UNT Digital Library