Resource Type

Language

Probing Late Neutrino Mass Properties With SupernovaNeutrinos (open access)

Probing Late Neutrino Mass Properties With SupernovaNeutrinos

Models of late-time neutrino mass generation contain new interactions of the cosmic background neutrinos with supernova relic neutrinos (SRNs). Exchange of an on-shell light scalar may lead to significant modification of the differential SRN flux observed at earth. We consider an Abelian U(1) model for generating neutrino masses at low scales, and show that there are cases for which the changes induced in the flux allow one to distinguish the Majorana or Dirac nature of neutrinos, as well as the type of neutrino mass hierarchy (normal or inverted or quasi-degenerate). In some region of parameter space the determination of the absolute values of the neutrino masses is also conceivable. Measurements of the presence of these effects may be possible at the next-generation water Cerenkov detectors enriched with Gadolinium, or a 100 kton liquid argon detector.
Date: August 8, 2007
Creator: Baker, Joseph; Goldberg, Haim; Perez, Gilad & Sarcevic, Ina
System: The UNT Digital Library
The Genome of the Epsilonproteobacterial Chemolithoautotroph Sulfurimonas dentrificans (open access)

The Genome of the Epsilonproteobacterial Chemolithoautotroph Sulfurimonas dentrificans

Sulfur-oxidizing epsilonproteobacteria are common in a variety of sulfidogenic environments. These autotrophic and mixotrophic sulfur-oxidizing bacteria are believed to contribute substantially to the oxidative portion of the global sulfur cycle. In order to better understand the ecology and roles of sulfur-oxidizing epsilonproteobacteria, in particular those of the widespread genus Sulfurimonas, in biogeochemical cycles, the genome of Sulfurimonas denitrificans DSM1251 was sequenced. This genome has many features, including a larger size (2.2 Mbp), that suggest a greater degree of metabolic versatility or responsiveness to the environment than seen for most of the other sequenced epsilonproteobacteria. A branched electron transport chain is apparent, with genes encoding complexes for the oxidation of hydrogen, reduced sulfur compounds, and formate and the reduction of nitrate and oxygen. Genes are present for a complete, autotrophic reductive citric acid cycle. Many genes are present that could facilitate growth in the spatially and temporally heterogeneous sediment habitat from where Sulfurimonas denitrificans was originally isolated. Many resistance-nodulation-development family transporter genes (10 total) are present; of these, several are predicted to encode heavy metal efflux transporters. An elaborate arsenal of sensory and regulatory protein-encoding genes is in place, as are genes necessary to prevent and respond to oxidative stress.
Date: August 8, 2007
Creator: Class, USF Genomics; Sievert, Stefan M.; Scott, Kathleen M.; Klotz, Martin G.; Chain, Patrick S.G.; Hauser, Loren J. et al.
System: The UNT Digital Library
Simple Stringy Dynamical SUSY Breaking (open access)

Simple Stringy Dynamical SUSY Breaking

We present simple string models which dynamically break supersymmetry without non-Abelian gauge dynamics. The Fayet model, the Polonyi model, and the O'Raifeartaigh model each arise from D-branes at a specific type of singularity. D-brane instanton effects generate the requisite exponentially small scale of supersymmetry breaking.
Date: August 8, 2007
Creator: Aharony, Ofer; /Weizmann Inst. /Stanford U., Phys. Dept. /SLAC; Kachru, Shamit; Silverstein, Eva & /Stanford U., Phys. Dept. /SLAC
System: The UNT Digital Library
VERIFICATION TEST PROBLEMS (open access)

VERIFICATION TEST PROBLEMS

We present analytic solutions to two test problems that can be used to check the hydrodynamic implementation in computer codes designed to calculate the propagation of shocks in spherically convergent geometry. Our analysis is restricted to fluid materials with constant bulk modulus. In the first problem we present the exact initial acceleration and pressure gradient at the outer surface of a sphere subjected to an exponentially decaying pressure of the form P(t) = P{sub 0}e{sup -at}. We show that finely-zoned hydro-code simulations are in good agreement with our analytic solution. In the second problem we discuss the implosions of incompressible spherical fluid shells and we present the radial pressure profile across the shell thickness. We also discuss a semi-analytic solution to the time-evolution of a nearly spherical shell with arbitrary but small initial 3-dimensional (3-D) perturbations on its inner and outer surfaces.
Date: August 8, 2007
Creator: Moran, B
System: The UNT Digital Library
Dislocation nucleation in bcc Ta single crystals studied by nanoindentation (open access)

Dislocation nucleation in bcc Ta single crystals studied by nanoindentation

The study of dislocation nucleation in closed-packed metals by nanoindentation has recently attracted much interest. Here, we address the peculiarities of the incipient plasticity in body centered cubic (bcc) metals using low index Ta single-crystals as a model system. The combination of nanoindentation with high-resolution atomic force microscopy provides us with experimental atomic-scale information on the process of dislocation nucleation and multiplication. Our results reveal a unique deformation behavior of bcc Ta at the onset of plasticity which is distinctly different from that of closed-packed metals. Most noticeable, we observe only one rather than a sequence of discontinuities in the load-displacement curves. This and other differences are discussed in context of the characteristic plastic deformation behavior of bcc metals.
Date: August 8, 2007
Creator: Biener, M M; Biener, J; Hodge, A M & Hamza, A V
System: The UNT Digital Library