Electronic structure quantum mechanics applied to some small polyatomic molecules (open access)

Electronic structure quantum mechanics applied to some small polyatomic molecules

None
Date: August 1, 1974
Creator: Liskow, D.H.
System: The UNT Digital Library
Electron Capture and the Auger Effect in the Heaviest Elements (open access)

Electron Capture and the Auger Effect in the Heaviest Elements

None
Date: August 1, 1955
Creator: Gray, P. R.
System: The UNT Digital Library
Investigation of bainite transformation in medium carbon low alloy steels (open access)

Investigation of bainite transformation in medium carbon low alloy steels

None
Date: August 1, 1974
Creator: Babu, B.N.P.
System: The UNT Digital Library
Solid-State Chemistry of Irradiated Choline Chloride (open access)

Solid-State Chemistry of Irradiated Choline Chloride

None
Date: August 1, 1973
Creator: Agarwal, R. D.
System: The UNT Digital Library
Nucleation and growth of tungsten thin films vapor deposited on vacuum- cleaved rock salt substrates (open access)

Nucleation and growth of tungsten thin films vapor deposited on vacuum- cleaved rock salt substrates

None
Date: August 1, 1973
Creator: Asselin, G P
System: The UNT Digital Library
Accuracy and optimization of tracking systems (open access)

Accuracy and optimization of tracking systems

None
Date: August 1, 1973
Creator: Sanford, R.L.
System: The UNT Digital Library
Synthesis and application of new polymer bound catalysts (open access)

Synthesis and application of new polymer bound catalysts

Nitric acid has been shown to be a weak acid in acetonitrile. It is conceivable that a nitrate salt of a weakly Lewis acidic cation could furnish a ''naked'' nitrate anion as a basic catalyst in a variety of reactions in non-aqueous solvents. Such a nitrate salt could also be bound to a polymeric support via the cation, thereby allowing for reclamation and recycling of the nitrate ion. This subject is dealt with in Chapter 2, wherein my contributions consisted of performing all the reactions with the polymer supported catalyst and carrying out the experiments necessary to shed light on the reaction mechanisms. Chapter 3 contains a description of the structure and catalytic properties of an azidoproazaphosphatrane. This compound is an air-stable versatile catalyst that has proven useful not only homogeneously, but also when bound to a solid support. The synthesis of a polymer bound proazaphosphatrane containing a trivalent phosphorus is presented in Chapter 4. Such a compound has been sought after by our group for a number of years. Not only does the synthesis I have accomplished for it allow for easier separation of proazaphosphatrane catalysts from reaction mixtures, but recycling of the base is made much simpler. Proazaphosphatranes …
Date: August 1, 2005
Creator: Fetterly, Brandon Michael
System: The UNT Digital Library
Microstructual investigation of mixed rar earth iron boron processed vis melt-spinning and high-pressure gas-atomization for isotrophic bonded permanent magnets (open access)

Microstructual investigation of mixed rar earth iron boron processed vis melt-spinning and high-pressure gas-atomization for isotrophic bonded permanent magnets

A solid solution of three rare earths (RE) in the RE{sub 2}Fe{sub 14}B structure have been combined to create the novel mixed rare earth iron boron (MRE{sub 2}Fe{sub 14}B) alloy family. MRE{sub 2}Fe{sub 14}B exhibits reduced temperature dependent magnetic properties; remanence and coercivity. The desired form of MRE{sub 2}Fe{sub 14}B is a powder that can be blended with a polymer binder and compression or injection molded to form an isotropic polymer bonded permanent magnet (PBM). Commercially, Nd{sub 2}Fe{sub 14}B is the alloy of choice for PBMs. Powders of Nd{sub 2}Fe{sub 14}B are made via melt-spinning as can be MRE{sub 2}Fe{sub 14}B which allows for direct comparisons. MRE{sub 2}Fe{sub 14}B made using melt-spinning at high wheel speeds is overquenched and must be annealed to an optimal hard magnetic state. Due to the rare earth content in the MRE{sub 2}Fe{sub 14}B powders, they must be protected from the environment in which they operate. This protection is accomplished by using a modified fluidized bed process to grow a protective fluoride coating nominally 15nm thick, to reduce air oxidation. MRE{sub 2}Fe{sub 14}B has demonstrated reduced temperature dependent magnetic properties in ribbon and PBM form. The real challenge has been modifying alloy designs that were …
Date: August 1, 2005
Creator: Buelow, Nicholas Lee
System: The UNT Digital Library
Translation techniques for distributed-shared memory programming models (open access)

Translation techniques for distributed-shared memory programming models

The high performance computing community has experienced an explosive improvement in distributed-shared memory hardware. Driven by increasing real-world problem complexity, this explosion has ushered in vast numbers of new systems. Each new system presents new challenges to programmers and application developers. Part of the challenge is adapting to new architectures with new performance characteristics. Different vendors release systems with widely varying architectures that perform differently in different situations. Furthermore, since vendors need only provide a single performance number (total MFLOPS, typically for a single benchmark), they only have strong incentive initially to optimize the API of their choice. Consequently, only a fraction of the available APIs are well optimized on most systems. This causes issues porting and writing maintainable software, let alone issues for programmers burdened with mastering each new API as it is released. Also, programmers wishing to use a certain machine must choose their API based on the underlying hardware instead of the application. This thesis argues that a flexible, extensible translator for distributed-shared memory APIs can help address some of these issues. For example, a translator might take as input code in one API and output an equivalent program in another. Such a translator could provide instant …
Date: August 1, 2005
Creator: Fuller, Douglas James
System: The UNT Digital Library
Nonphotochemical Hole-Burning Imaging Studies of In Vitro Carcinoma and Normal Cells Utilizing a Mitochondrial Specific Dye (open access)

Nonphotochemical Hole-Burning Imaging Studies of In Vitro Carcinoma and Normal Cells Utilizing a Mitochondrial Specific Dye

Low temperature Nonphotochemical Hole Burning (NPHB) Spectroscopy of the dye rhodamine 800 (MF680) was applied for the purpose of discerning differences between cultured normal and carcinoma ovarian surface epithelial (OSE) cells. Both the cell lines were developed and characterized at the Mayo Clinic (Rochester, MN), with the normal cell line having been transfected with a strain of temperature sensitive Simian Virus 40 Large T Antigen (SV40) for the purpose of extending the life of the cell culture without inducing permanent changes in the characteristics of the cell line. The cationic lipophilic fluorophore rhodamine 800 preferentially locates in in situ mitochondria due to the high lipid composition of mitochondria and the generation of a large negative membrane potential (relative to the cellular cytoplasm) for oxidative phosphorylation. Results presented for NPHB of MF680 located in the cells show significant differences between the two cell lines. The results are interpreted on the basis of the NPHB mechanism and characteristic interactions between the host (cellular mitochondrial) and the guest (MF680) in the burning of spectral holes, thus providing an image of the cellular ultrastructure. Hole growth kinetics (HGK) were found to differ markedly between the two cell lines, with the carcinoma cell line burning …
Date: August 1, 2002
Creator: Walsh, Richard Joseph
System: The UNT Digital Library
High-Tc SQUIDs: Noise and applications (open access)

High-Tc SQUIDs: Noise and applications

None
Date: August 1, 2001
Creator: Cho, Hsiao-Mei
System: The UNT Digital Library
Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria (open access)

Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application of NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Qy-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophyll a (BChl a) molecules …
Date: August 1, 2002
Creator: Matsuzaki, Satoshi
System: The UNT Digital Library
High Precision Spectroscopy of Lambda-Hypernuclei by (e, e' K{sup +}) reaction and gamma-ray measurement (open access)

High Precision Spectroscopy of Lambda-Hypernuclei by (e, e' K{sup +}) reaction and gamma-ray measurement

Hypernuclei, with one nucleon converted into a hyperon and coupled back to the residual nuclear core, provide a new probe to study the hyperon-nucleon interaction and an additional strangeness degree of freedom to test the limit of our conventional nuclear models in solving the many body system. The First Lambda electroproduction experiment E89009(HNSS) at JLAB focusing on the Lambda hypernuclear spectroscopy in p-shell achieved the best resolution( FWHM: 500-600 keV) ever reached in this field. The unnatural parity (spin-flip) states were observed for the first time on the 12 / Lambda B missing mass spectrum. The detailed hypernuclear structure of 9 / Lambda Be produced through (k{sup -}, pi{sup -}) reaction in BNL-AGS, was studied with the hypernuclear gamma-ray spectroscopy by using a large acceptance germanium detector (Hyperball) in experiment E-930.
Date: August 1, 2001
Creator: Zhu, Xiaofeng
System: The UNT Digital Library
Characterization of piesoelectric ZnO thin films and the fabrication of piezoelectric micro-cantilevers (open access)

Characterization of piesoelectric ZnO thin films and the fabrication of piezoelectric micro-cantilevers

In Atomic Force Microscopy (AFM), a microcantilever is raster scanned across the surface of a sample in order to obtain a topographical image of the sample's surface. In a traditional, optical AFM, the sample rests on a bulk piezoelectric tube and a control loop is used to control the tip-sample separation by actuating the piezo-tube. This method has several disadvantages--the most noticeable one being that response time of the piezo-tube is rather long which leads to slow imaging speeds. One possible solution aimed at improving the speed of imaging is to incorporate a thin piezoelectric film on top of the cantilever beam. This design not only improves the speed of imaging because the piezoelectric film replaces the piezo-tube as an actuator, but the film can also act as a sensor. In addition, the piezoelectric film can excite the cantilever beam near its resonance frequency. This project aims to fabricate piezoelectric microcantilevers for use in the AFM. Prior to fabricating the cantilevers and also part of this project, a systematic study was performed to examine the effects of deposition conditions on the quality of piezoelectric ZnO thin films deposited by RF sputtering. These results will be presented. The deposition parameters that …
Date: August 1, 2005
Creator: Johnson, Raegan Lynn
System: The UNT Digital Library
Direct measurement of anisotropy of interfacial free energy from grain boundary groove morphology in transparent organic metal analong systems (open access)

Direct measurement of anisotropy of interfacial free energy from grain boundary groove morphology in transparent organic metal analong systems

Both academia and industry alike have paid close attention to the mechanisms of microstructural selection during the solidification process. The forces that give rise to and the principles which rule the natural selection of particular morphologies are important to understanding and controlling new microstructures. Interfacial properties play a very crucial role to the selection of such microstructure formation. In the solidification of a metallic alloy, the solid-liquid interface is highly mobile and responds to very minute changes in the local conditions. At this interface, the driving force must be large enough to drive solute diffusion, maintain local curvature, and overcome the kinetic barrier to move the interface. Therefore, the anisotropy of interfacial free energy with respect to crystallographic orientation is has a significant influence on the solidification of metallic systems. Although it is generally accepted that the solid-liquid interfacial free energy and its associated anisotropy are highly important to the overall selection of morphology, the confident measurement of these particular quantities remains a challenge, and reported values are scarce. Methods for measurement of the interfacial free energy include nucleation experiments and grain boundary groove experiments. The predominant method used to determine anisotropy of interfacial energy has been equilibrium shape measurement. …
Date: August 1, 2005
Creator: Rustwick, Bryce A.
System: The UNT Digital Library
Real-time monitoring and manipulation of single bio-molecules in free solution (open access)

Real-time monitoring and manipulation of single bio-molecules in free solution

The observation and manipulation of single biomolecules allow their dynamic behaviors to be studied to provide insight into molecular genetics, biochip assembly, biosensor design, DNA biophysics. In a PDMS/glass microchannel, a nonuniform electroosmotic flow (EOF) was created. By using a scanning confocal fluorescence microscope and total internal-reflection fluorescence microscope (TIRFM), we demonstrated that negatively charged DNA molecules were focused by the nonuniform EOF into a thin layer at the glass surface. This phenomenon was applied to selectively detect target DNA molecules without requiring the separation of excessive probes and can be applied continuously to achieve high throughput. A variable-angle-TIRFM was constructed for imaging single DNA molecule dynamics at a solid/liquid interface. Implications we have are that the measured intensities cannot be used directly to determine the distances of molecules from the surface and the experimental counting results depict the distance-dependent dynamics of molecules near the surface; Molecules at low ionic strengths experience electrostatic repulsion at distances much further away from the surface than the calculated thickness of the electrical double layer. {delta}-DNA was employed as a nanoprobe for different functionalized surfaces to elucidate adsorption in chromatography. The 12-base unpaired ends of this DNA provide exposed purine and pyrimidine groups for …
Date: August 1, 2005
Creator: Li, Hung-Wing
System: The UNT Digital Library
Hiking the valleys of quatum chemistry (open access)

Hiking the valleys of quatum chemistry

This thesis is concerned with both the application and the extension of quantum chemical methods. Each chapter of the thesis represents a paper that has been published in or will be submitted to a scientific journal. The first three chapters of this thesis describe contributions made to chemistry through the use of quantum chemical methods, while the final two chapters illustrate the development of new methods. Chapter 2 and Chapter 3 characterize a study of the electronic structure and magnetic properties of homodinuclear titanium(III) complexes, in order to determine trends related to their potential use as molecular magnets. Chapter 2 focuses on hydride and halide bridging and terminal ligands, while Chapter 3 explores bridging ligands from other groups in the periodic table. Chapter 4 portrays a study of the solvation of glycine. Microsolvation and continuum solvation approaches are investigated in order to study the structures of small glycine-water clusters and determine the energy difference between the zwitterionic and nonionized forms of glycine, the simplest amino acid. Chapters 5 and 6 describe the implementation of analytic gradients, which are required for efficient molecular geometry optimizations, for two open-shell second-order perturbation theory methods. Chapter 5 discusses gradients for unrestricted Moeller-Plesset perturbation theory, …
Date: August 1, 2005
Creator: Aikens, Christine Marie
System: The UNT Digital Library
Field-induced magnetic phase transitions and correlated electronic states in the hexagonal RAgGE and RPtIn series (open access)

Field-induced magnetic phase transitions and correlated electronic states in the hexagonal RAgGE and RPtIn series

The present work was initially motivated by the desire to continue the study of complex metamagnetism in relation to the crystal structure of various compounds; this study already included tetragonal compounds like HoNi{sub 2}B{sub 2}C (Canfield 1997b; Kalatsky 1998) and DyAgSb{sub 2} (Myers 1999), in which the rare earths occupy unique tetragonal positions. We intended to find hexagonal systems suited for such a study, with complex metamagnetic properties, and the search for extremely anisotropic hexagonal compounds turned into a rewarding exploration. We identified and grew most of the heavy rare earth members of two isostructural series, RAgGe and RPtIn, both belonging to the hexagonal Fe{sub 2}P family of materials. In each of these series we found one compound, TmAgGe, and TbPtIn respectively, that was suitable for a simple study of angular dependent metamagnetism: they had three rare earth ions in the unit cell, positioned at a unique crystallographic site with orthorhombic point symmetry. The magnetization of both TmAgGe and TbPtIn was extremely anisotropic, with larger values for the in-plane orientation of the applied field than in the axial direction. Complex metamagnetic transitions existed for field within the ab-plane, and, similar to the case of the tetragonal compounds RNi{sub 2}B{sub 2}C …
Date: August 1, 2005
Creator: Morosan, Emilia
System: The UNT Digital Library
High Precision Hypernuclear Spectroscopy Study by the (e,e'K) Reaction (open access)

High Precision Hypernuclear Spectroscopy Study by the (e,e'K) Reaction

Jefferson Lab experiment E89009 is the first experiment to study hypernuclear spectroscopy by (e,e' K{sup +}) reaction. The 12 / LambdaB spectrum was observed from carbon target with the best energy resolution ever achieved from direct measurement of hypernuclear spectrum. The comparisons of the 12 / LambdaB spectrum with theoretical predictions were provided in terms of excitation strength and level separations. The overall excitation is in accord with theoretical calculations. The binding energies of p-shell and s-shell Lambda states were extracted. The photo-production cross section of the 12 / LambdaB ground state was also extracted. The experiment is also the pioneer in detecting scattered electrons at near zero degrees. The benefit and lessons learned from this method was also discussed.
Date: August 1, 2002
Creator: Yuan, Lulin
System: The UNT Digital Library
Design of Surface micromachined Compliant MEMS (open access)

Design of Surface micromachined Compliant MEMS

The consideration of compliant mechanisms as Microelectromechanical Systems (MEMS) is the focus of this research endeavor. MEMS are micron to millimeter devices that combine electrical, mechanical, and information processing capabilities on the same device. These MEMS need some mechanical motion or parts that move relative to each other. This relative motion, using multiple parts, is not desired because of the assembly requirement and the friction introduced. Compliant devices limits or eliminates friction and the need for multi-component assembly. Compliant devices improve designs by creating single piece mechanisms. The purpose of this research is to validate surface micromachining as a viable fabrication process for compliant MEMS designs. Specifically, this research has sought to fabricate a micro-compliant gripper and a micro-compliant clamp to illustrate the process. While other researchers have created compliant MEMS, most have used comb-drive actuation methods and bulk micromachining processes. This research focuses on fully-compliant devices that use device flexibility for motion and actuation. Validation of these compliant MEMS is achieved by structural optimization of device design and functional performance testing. This research contributes to the ongoing research in MEMS by evaluating the potential of using surface micromachining as a process for fabricating compliant micro-mechanisms.
Date: August 1, 2002
Creator: Bradley, Joe Anthony
System: The UNT Digital Library
Hydrogen Storage Properties of Lithium Aluminohydride Modified by Dopants and Mechanochemistry (open access)

Hydrogen Storage Properties of Lithium Aluminohydride Modified by Dopants and Mechanochemistry

Alkali metal aluminohydrides have high potential as solid hydrogen storage materials. They have been known for their irreversible dehydrogenation process below 100 atm until Bogdanovic et al [1, 2] succeeded in the re-hydrogenation of NaAlH{sub 4} below 70 atm. They achieved 4 wt.% H{sub 2} reversible capacity by doping NaAlH{sub 4} with Ti and/or Fe organo-metalic compounds as catalysts. This suggests that other alkali and, possibly alkaline earth metal aluminohydrides can be used for reversible hydrogen storage when modified by proper dopants. In this research, Zr{sub 27}Ti{sub 9}Ni{sub 38}V{sub 5}Mn{sub 16}Cr{sub 5}, LaNi{sub 4.85}Sn{sub 0.15}, Al{sub 3}Ti, and PdCl{sub 2} were combined , LaNi4.85Sn0.15, Al3Ti, and PdCl2 were combined with LiAlH{sub 4} by ball-milling to study whether or not LiAlH{sub 4} is capable to both absorb and desorb hydrogen near ambient conditions. X-ray powder diffraction, differential thermal analysis, and scanning electron microscopy were employed for sample characterizations. All four compounds worked as catalysts in the dehydrogenation reactions of both LiAlH{sub 4} and Li{sub 3}AlH{sub 6} by inducing the decomposition at lower temperature. However, none of them was applicable as catalyst in the reverse hydrogenation reaction at low to moderate hydrogen pressure.
Date: August 1, 2002
Creator: Hosokawa, Keita
System: The UNT Digital Library
Magnetic, Caloric and Crystallographic Properties of Dy5(SixGe1-x)4 Alloys (open access)

Magnetic, Caloric and Crystallographic Properties of Dy5(SixGe1-x)4 Alloys

None
Date: August 1, 2002
Creator: Ivchenko, Vitaliy Vladislavovich
System: The UNT Digital Library
Dualities in M-theory and Born-Infeld Theory (open access)

Dualities in M-theory and Born-Infeld Theory

We discuss two examples of duality. The first arises in the context of toroidal compactification of the discrete light cone quantization of M-theory. In the presence of nontrivial moduli coming from the M-theory three form, it has been conjectured that the system is described by supersymmetric Yang-Mills gauge theory on a noncommutative torus. We are able to provide evidence for this conjecture, by showing that the dualities of this M-theory compactification, which correspond to T-duality in Type IIA string theory, are also dualities of the noncommutative supersymmetric Yang-Mills description. One can also consider this as evidence for the accuracy of the Matrix Theory description of M-theory in this background. The second type of duality is the self-duality of theories with U(1) gauge fields. After discussing the general theory of duality invariance for theories with complex gauge fields, we are able to find a generalization of the well known U(1) Born-Infeld theory that contains any number of gauge fields and which is invariant under the maximal duality group. We then find a supersymmetric extension of our results, and also show that our results can be extended to find Born-Infeld type actions in any even dimensional spacetime.
Date: August 1, 2001
Creator: Brace, Daniel, M
System: The UNT Digital Library
Length Scale Correlations of Cellular Microstructures in Directionally Solidified Binary System (open access)

Length Scale Correlations of Cellular Microstructures in Directionally Solidified Binary System

In a cellular array, a range of primary spacing is found to be stable under given growth conditions. Since a strong coupling of solute field exists between the neighboring cells, primary spacing variation should also influence other microstructure features such as cell shape and cell length. The existence of multiple solutions is examined in this study both theoretically as well as experimentally. A theoretical model is developed that identifies and relates four important microstructural lengths, which are found to be primary spacing, tip radius, cell width and cell length. This general microstructural relationship is shown to be valid for different cells in an array as well as for other cellular patterns obtained under different growth conditions. The unique feature of the model is that the microstructure correlation does not depend on composition or growth conditions since these variables scale microstructural lengths to satisfy the relationship obtained in this study. Detailed directional solidification experimental studies have been carried out in the succinonitrile-salol system to characterize and measure these four length scales. Besides the validation of the model, experimental results showed additional scaling laws to be present. In the regime where only a cellular structure is formed, the shape of the cell, …
Date: August 1, 2002
Creator: Shen, Yunxue
System: The UNT Digital Library