Language

Analysis of stray radiation produced by the advanced light source (1.9 GeV synchrotron radiation source) at Lawrence Berkeley Laboratory (open access)

Analysis of stray radiation produced by the advanced light source (1.9 GeV synchrotron radiation source) at Lawrence Berkeley Laboratory

The yearly environmental dose equivalent likely to result at the closest site boundary from the Advanced Light Source was determined by generating multiple linear regressions. The independent variables comprised quantified accelerator operating parameters and measurements from synchronized, in-close (outside shielding prior to significant atmospheric scattering), state-of-the-art neutron remmeters and photon G-M tubes. Neutron regression models were more successful than photon models due to lower relative background radiation and redundant detectors at the site boundary. As expected, Storage Ring Beam Fill and Beam Crashes produced radiation at a higher rate than gradual Beam Decay; however, only the latter did not include zero in its 95% confidence interval. By summing for all three accelerator operating modes, a combined yearly DE of 4.3 mRem/yr with a 90% CI of (0.04-8.63) was obtained. These results fall below the DOE reporting level of 10 mRem/yr and suggest repeating the study with improved experimental conditions.
Date: December 31, 1995
Creator: Ajemian, R. C.
System: The UNT Digital Library
An investigation of factors affecting the performance of laboratory fume hoods (open access)

An investigation of factors affecting the performance of laboratory fume hoods

A `user tracer gas test` was performed on laboratory hoods, with a human subject standing in front of the hood, to assess hood containment ability. The relationship of face velocity and cross draft variables to hood containment ability is investigated. The ability of these variables and other tests, such as smoke challenges or tracer gas tests performed with a manikin at the hood, to predict the results of the user tracer gas test is evaluated. All of the laboratory hoods tested in this study were identical bench top bypass hoods with horizontally sliding sashes. A face velocity traverse, cross draft measurements, a pitot traverse to measure exhaust flow, a smoke test, a manikin tracer gas test, and a user tracer gas test were performed on each hood in several different sash positions. Based on the data collected, face velocity, its distribution and variability, and the magnitude of cross drafts relative to face velocity are important variables in determining hood leakage. `Unblocked` vortices, formed such that no physical barrier exists between the vortex and room air or a person in front of the hood, are identified as important sites of leakage. For the hoods evaluated in this study, unblocked vortices were …
Date: December 31, 1995
Creator: Altemose, B.A.
System: The UNT Digital Library
Analysis of offsite dose calculation methodology for a nuclear power reactor (open access)

Analysis of offsite dose calculation methodology for a nuclear power reactor

This technical study reviews the methodology for calculating offsite dose estimates as described in the offsite dose calculation manual (ODCM) for Pennsylvania Power and Light - Susquehanna Steam Electric Station (SSES). An evaluation of the SSES ODCM dose assessment methodology indicates that it conforms with methodology accepted by the US Nuclear Regulatory Commission (NRC). Using 1993 SSES effluent data, dose estimates are calculated according to SSES ODCM methodology and compared to the dose estimates calculated according to SSES ODCM and the computer model used to produce the reported 1993 dose estimates. The 1993 SSES dose estimates are based on the axioms of Publication 2 of the International Commission of Radiological Protection (ICRP). SSES Dose estimates based on the axioms of ICRP Publication 26 and 30 reveal the total body estimates to be the most affected.
Date: December 31, 1995
Creator: Moser, D.M.
System: The UNT Digital Library
Mathematical modeling plasma transport in tokamaks (open access)

Mathematical modeling plasma transport in tokamaks

In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of …
Date: December 31, 1995
Creator: Quiang, Ji
System: The UNT Digital Library
Studies of the terrestrial O{sub 2} and carbon cycles in sand dune gases and in biosphere 2 (open access)

Studies of the terrestrial O{sub 2} and carbon cycles in sand dune gases and in biosphere 2

Molecular oxygen in the atmosphere is coupled tightly to the terrestrial carbon cycle by the processes of photosynthesis, respiration, and burning. This dissertation examines different aspects of this coupling in four chapters. Chapter 1 explores the feasibility of using air from sand dunes to reconstruct atmospheric O{sub 2} composition centuries ago. Such a record would reveal changes in the mass of the terrestrial biosphere, after correction for known fossil fuel combustion, and constrain the fate of anthropogenic CO{sub 2}.
Date: December 31, 1995
Creator: Severinghaus, J.P.
System: The UNT Digital Library
Magnetohydrodynamic simulations of noninductive helicity injection in the reversed-field pinch and tokamak (open access)

Magnetohydrodynamic simulations of noninductive helicity injection in the reversed-field pinch and tokamak

Numerical computation is used to investigate resistive magnetohydrodynamic (MHD) fluctuations in the reversed-field pinch (RFP) and in tokamak-like configurations driven solely by direct current (DC) helicity injection. A Lundquist number (S) scan of RFP turbulence without plasma pressure produces the weak scaling of S{sup -0.18} for the root-mean-square magnetic fluctuation level for 2.5x10{sup 3}{le}S{le}4x10{sup 4}. The temporal behavior of fluctuations and the reversal parameter becomes more regular as S is increased, acquiring a {open_quotes}sawtooth{close_quotes} shape at the largest value of S. Simulations with plasma pressure and anisotropic thermal conduction demonstrate energy transport resulting from parallel heat fluctuations. To investigate means of improving RFP energy confinement, three forms of current profile modification are tested. Radio frequency (RF) current drive is modeled with an auxiliary electron force, and linear stability calculations are used.
Date: December 31, 1995
Creator: Sovinec, C. R.
System: The UNT Digital Library
Evaluating open-path FTIR spectrometer data using different quantification methods, libraries, and background spectra obtained under varying environmental conditions (open access)

Evaluating open-path FTIR spectrometer data using different quantification methods, libraries, and background spectra obtained under varying environmental conditions

Studies were performed to evaluate the accuracy of open-path Fourier Transform Infrared (OP-FTIR) spectrometers using a 35 foot outdoor exposure chamber in Pittsboro, North Carolina. Results obtained with the OP-FTIR spectrometer were compared to results obtained with a reference method (a gas chromatograph equipped with a flame ionization detector, GC-FID). Concentration results were evaluated in terms of the mathematical methods and spectral libraries used for quantification. In addition, the research investigated the effect on quantification of using different backgrounds obtained at various times during the day. The chemicals used in this study were toluene, cyclohexane, and methanol; and these were evaluated over the concentration range of 5-30 ppm.
Date: December 31, 1995
Creator: Tomasko, M.S.
System: The UNT Digital Library
MagRad: A code to optimize the operation of superconducting magnets in a radiation environment (open access)

MagRad: A code to optimize the operation of superconducting magnets in a radiation environment

A powerful computational tool, called MagRad, has been developed which optimizes magnet design for operation in radiation fields. Specifically, MagRad has been used for the analysis and design modification of the cable-in-conduit conductors of the TF magnet systems in fusion reactor designs. Since the TF magnets must operate in a radiation environment which damages the material components of the conductor and degrades their performance, the optimization of conductor design must account not only for start-up magnet performance, but also shut-down performance. The degradation in performance consists primarily of three effects: reduced stability margin of the conductor; a transition out of the well-cooled operating regime; and an increased maximum quench temperature attained in the conductor. Full analysis of the magnet performance over the lifetime of the reactor includes: radiation damage to the conductor, stability, protection, steady state heat removal, shielding effectiveness, optimal annealing schedules, and finally costing of the magnet and reactor. Free variables include primary and secondary conductor geometric and compositional parameters, as well as fusion reactor parameters. A means of dealing with the radiation damage to the conductor, namely high temperature superconductor anneals, is proposed, examined, and demonstrated to be both technically feasible and cost effective. Additionally, two relevant …
Date: December 31, 1995
Creator: Yeaw, Christopher T.
System: The UNT Digital Library
Study of temporal variation of radon concentrations in public drinking water supplies (open access)

Study of temporal variation of radon concentrations in public drinking water supplies

The Environmental Protection Agency (EPA) has proposed a Maximum Contaminant Level (MCL) for radon-222 in public drinking water supplies of 300 pCi/L. Proposed monitoring requirements include collecting quarterly grab samples for the first year, then annual samples for the remainder of the compliance cycle provided first year quarterly samples average below the MCL. The focus of this research was to study the temporal variation of groundwater radon concentrations to investigate how reliably one can predict an annual average radon concentration based on the results of grab samples. Using a {open_quotes}slow-flow{close_quotes} collection method and liquid scintillation analysis, biweekly water samples were taken from ten public water supply wells in North Carolina (6 month - 11 month sampling periods). Based on study results, temporal variations exist in groundwater radon concentrations. Statistical analysis performed on the data indicates that grab samples taken from each of the ten wells during the study period would exhibit groundwater radon concentrations within 30% of their average radon concentration.
Date: December 31, 1995
Creator: York, E. L.
System: The UNT Digital Library