Influence of argon and oxygen on charge-state-resolved ion energydistributions of filtered aluminum arcs (open access)

Influence of argon and oxygen on charge-state-resolved ion energydistributions of filtered aluminum arcs

The charge-state-resolved ion energy distributions (IEDs) in filtered aluminum vacuum arc plasmas were measured and analyzed at different oxygen and argon pressures in the range 0.5 8.0 mTorr. A significant reduction of the ion energy was detected as the pressure was increased, most pronounced in an argon environment and for the higher charge states. The corresponding average charge state decreased from 1.87 to 1.0 with increasing pressure. The IEDs of all metal ions in oxygen were fitted with shifted Maxwellian distributions. The results show that it is possible to obtain a plasma composition with a narrow charge-state distribution as well as a narrow IED. These data may enable tailoring thin-film properties through selecting growth conditions that are characterized by predefined charge state and energy distributions.
Date: March 23, 2006
Creator: Rosen, Johanna; Anders, Andre; Mraz, Stanislav; Atiser, Adil & Schneider, Jochen M.
Object Type: Article
System: The UNT Digital Library
Extraction System Design for the Bsns/Rcs. (open access)

Extraction System Design for the Bsns/Rcs.

The BSNS extraction system takes use one of the four dispersion-free straight sections. Five vertical kickers and one Lambertson septum magnet are used for the one-turn extraction. The rise time of less 250 ns and the total kicking angle of 20 mrad are required for the kickers that are grouped into two tanks. The design for the kicker magnets and the PFN is also given. To reduce the low beam loss in the extraction channels due to large halo emittance, large apertures are used for both the kickers and septum. Stray magnetic field inside and at the two ends of the circulating path of the Lambertson magnet and its effect to the beam has been studied.
Date: June 23, 2006
Creator: Wei, J.; Chen, Y.; Chi, Y. L.; Jiang, Y. L.; Kang, W.; Pang, J. B. et al.
Object Type: Article
System: The UNT Digital Library
A General Methodology for Evaluation of Carbon Sequestration Activities and Carbon Credits (open access)

A General Methodology for Evaluation of Carbon Sequestration Activities and Carbon Credits

A general methodology was developed for evaluation of carbon sequestration technologies. In this document, we provide a method that is quantitative, but is structured to give qualitative comparisons despite changes in detailed method parameters, i.e., it does not matter what ''grade'' a sequestration technology gets but a ''better'' technology should receive a better grade. To meet these objectives, we developed and elaborate on the following concepts: (1) All resources used in a sequestration activity should be reviewed by estimating the amount of greenhouse gas emissions for which they historically are responsible. We have done this by introducing a quantifier we term Full-Cycle Carbon Emissions, which is tied to the resource. (2) The future fate of sequestered carbon should be included in technology evaluations. We have addressed this by introducing a variable called Time-adjusted Value of Carbon Sequestration to weigh potential future releases of carbon, escaping the sequestered form. (3) The Figure of Merit of a sequestration technology should address the entire life-cycle of an activity. The figures of merit we have developed relate the investment made (carbon release during the construction phase) to the life-time sequestration capacity of the activity. To account for carbon flows that occur during different times …
Date: December 23, 2002
Creator: Klasson, KT
Object Type: Report
System: The UNT Digital Library
Basis for Selection of a Residual Waste Retrieval System for Gunite and Associated Tank W-9 at the Oak Ridge National Laboratory (open access)

Basis for Selection of a Residual Waste Retrieval System for Gunite and Associated Tank W-9 at the Oak Ridge National Laboratory

Waste retrieval and transfer operations at the Gunite{trademark} and Associated Tanks (GAATs) Remediation Project have been successfully accomplished using the Tank Waste Retrieval System. This system is composed of the Modified Light-Duty Utility Arm, Houdini Vehicle, Waste Dislodging and Conveyance System, Hose Management Arm, and Sludge Conditioning System. GAAT W-9 has been used as a waste-consolidation and batch-transfer tank during the retrieval of sludges and supernatants from the seven Gunite tanks in the North and South tank farms at Oak Ridge National Laboratory. Tank W-9 was used as a staging tank for the transfers to the Melton Valley Storage Tanks (MVSTs). A total of 18 waste transfers from W-9 occurred between May 25, 1999, and March 30, 2000. Most of these transfers were accomplished using the PulsAir Mixer to mobilize and mix the slurry and a submersible retrieval-transfer pump to transfer the slurry through the Sludge Conditioning System and the {approx}1-mile long, 2-in.-diam waste-transfer line to the MVSTs. The transfers from W-9 have consisted of low-solids-content slurries with solids contents ranging from {approx}2.8 to 6.8 mg/L. Of the initial {approx}88,000 gal of wet sludge estimated in the GAATs, a total of {approx}60,451 gal have been transferred to the MVSTs via …
Date: October 23, 2000
Creator: Lewis, B. E.
Object Type: Report
System: The UNT Digital Library
USE OF COUPLED MULTI-ELECTRODE ARRAYS TO ADVANCE THE UNDERSTANDING OF SELECTED CORROSION PHENOMENA (open access)

USE OF COUPLED MULTI-ELECTRODE ARRAYS TO ADVANCE THE UNDERSTANDING OF SELECTED CORROSION PHENOMENA

The use of multi-coupled electrode arrays in various corrosion applications is discussed with the main goal of advancing the understanding of various corrosion phenomena. Both close packed and far spaced electrode configurations are discussed. Far spaced electrode arrays are optimized for high throughput experiments capable of elucidating the effects of various variables on corrosion properties. For instance the effects of a statistical distribution of flaws on corrosion properties can be examined. Close packed arrays enable unprecedented spatial and temporal information on the behavior of local anodes and cathodes. Interactions between corrosion sites can trigger or inhibit corrosion phenomena and affect corrosion damage evolution.
Date: February 23, 2006
Creator: Budiansky, N.D.; Bocher, F.; Cong, H.; Hurley, M.F. & Scully, J.R.
Object Type: Report
System: The UNT Digital Library
PIMC Simulation of Ps Annihilation: From Micro to Mesopores (open access)

PIMC Simulation of Ps Annihilation: From Micro to Mesopores

Path Integral Monte Carlo (PIMC) can reproduce the results of simple analytical calculations in which a single quantum particle is used to represent positronium within an idealized, spherical pore. Our calculations improve on this approach by explicitly treating the positronium as a two-particle e{sup -}, e{sup +} system interacting via the Coulomb interaction. We study the lifetime and the internal contact density, {kappa}, which controls the self-annihilation behavior, for positronium in model spherical pores, as a function of temperature and pore size. We compare the results with both PIMC and analytical calculations for a single-particle model.
Date: August 23, 2005
Creator: Bug, A. R. & Sterne, P. A.
Object Type: Article
System: The UNT Digital Library
Project Work Plan Chromium Vadose Zone Characterization and Geochemistry (open access)

Project Work Plan Chromium Vadose Zone Characterization and Geochemistry

The major objectives of the proposed study are to 1) determine the leaching characteristics of Cr(VI) from contaminated sediments collected from 100 area spill sites, 2) elucidate possible Cr(VI) mineral and/or chemical associations that may be responsible for Cr(VI) retention in the Hanford site 100 areas through the use of i) macroscopic solubility studies and ii) microscale characterization of contaminated sediments, and 3) from these data construct a conceptual model of Cr(VI) geochemistry in the Hanford 100 area vadose zone. These objectives are based on locating and obtaining contaminated sediment with depth and at varying Cr(VI) concentrations as we hypothesize that mineral/chemical-Cr(VI) associations should be related to the total Cr concentration and other master geochemical variables (e.g., pH, counter-cation type and concentration, and water content). In addressing these objectives, additional benefits accrued will be (1) a fuller understanding of Cr(VI) entrained in the vadose zone that will that can be utilized in modeling potential Cr(VI) source terms, and 2) accelerating the Columbia River 100 area corridor cleanup by developing remedial action based on a fundamental understanding of Cr(VI) vadose zone geochemistry.
Date: May 23, 2006
Creator: Ainsworth, Calvin C.
Object Type: Report
System: The UNT Digital Library
Final optics damage inspection (FODI) for the National Ignition Facility (open access)

Final optics damage inspection (FODI) for the National Ignition Facility

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) will routinely fire high energy shots (approaching 10 kJ per beamline) through the final optics, located on the target chamber. After a high fluence shot, exceeding 4J/cm2 at 351 nm wavelength, the final optics will be inspected for laser-induced damage. The FODI (Final Optics Damage Inspection) system has been developed for this purpose, with requirements to detect laser-induced damage initiation and to track and size it's the growth to the point at which the optic is removed and the site mitigated. The FODI system is the 'corner stone' of the NIF optic recycle strategy. We will describe the FODI system and discuss the challenges to make optics inspection a routine part of NIF operations.
Date: October 23, 2007
Creator: Conder, A.; Alger, T.; Azevedo, S.; Chang, J.; Glenn, S.; Kegelmeyer, L. et al.
Object Type: Article
System: The UNT Digital Library
Achieving Stability Requirements for Nanoprobe and Long Beam Lines at NSLS II. A Comprehensive Study (open access)

Achieving Stability Requirements for Nanoprobe and Long Beam Lines at NSLS II. A Comprehensive Study

Driven by beam stability requirements at the NSLS II synchrotron, such that the desired small beam sizes and high brightness are both realized and stable, a comprehensive study has been launched seeking to provide assurances that stability at the nanometer level at critical x-ray beam-lines, is achievable, given the natural and cultural vibration environment at the selected site. The study consists of (a) an extensive investigation of the site to evaluate the existing ground vibration, in terms of amplitude, frequency content and coherence, and (b) of a numerical study of wave propagation and interaction with the infrastructure of the sensitive lines. The paper presents results from both aspects of the study.
Date: June 23, 2008
Creator: Simos,N.; Fallier, M.; Hill, J.; Berman, L.; Evans-Lutterodt, K. & Broadbent, A.
Object Type: Article
System: The UNT Digital Library
Comment on ?Spin crossover in (Mg,Fe)O: A M?ssbauer effect study with an alternative interpretation of x-ray emission spectroscopy data? (open access)

Comment on ?Spin crossover in (Mg,Fe)O: A M?ssbauer effect study with an alternative interpretation of x-ray emission spectroscopy data?

Electronic spin-pairing transition of iron in magnesiow{umlt u}stite-(Mg,Fe)O has been recently studied with X-ray emission and M{umlt o}ssbauer spectroscopies under high pressures. While these studies reported a high-spin to low-spin transition of iron to occur at pressures above approximately 50 GPa, the width of the observed transition varies significantly. In particular, Kantor et al. reported that the transition in (Mg0.8,Fe0.2)O occurs over a pressure range of approximately 50 GPa in high-pressure M{umlt o}ssbauer measurements. To account for the discrepancy in the transition pressure, Kantor et al. reanalyzed the X-ray emission spectra by Lin et al. using a simple spectral decomposition method and claimed that X-ray emission measurements are also consistent with a spin crossover of iron at high pressures. Here we show that the proposed fitting method is inadequate to describe the X-ray emission spectrum of the low-spin FeS2 and would give an erroneous satellite peak (K{sub beta}') intensity, leading to an artificial high-spin component and, consequently, to invalid conclusions regarding the width of the pressure-induced transition in magnesiow{umlt u}stite. Furthermore, we compare Kantor's M{umlt o}ssbauer data with other recent high-pressure M{umlt o}ssbauer studies and show that the width of the transition can be simply explained by different experimental conditions …
Date: May 23, 2006
Creator: Lin, J.; Struzhkin, V. V. & Garriliuk, A.
Object Type: Article
System: The UNT Digital Library
Precise Predictions for W + 3 Jet Production at Hadron Colliders (open access)

Precise Predictions for W + 3 Jet Production at Hadron Colliders

We report on the first next-to-leading order QCD computation of W + 3-jet production in hadronic collisions including all partonic subprocesses. We compare the results with CDF data from the Tevatron, and find excellent agreement. The renormalization and factorization scale dependence is reduced substantially compared to leading-order calculations. The required one-loop matrix elements are computed using on-shell methods, implemented in a numerical program, BlackHat. We use the SHERPA package to generate the real-emission contributions and to integrate the various contributions over phase space. We use a leading-color (large-N{sub c}) approximation for the virtual part, which we confirm in W + 1,2-jet production to be valid to within three percent. The present calculation demonstrates the utility of on-shell methods for computing next-to-leading-order corrections to processes important to physics analyses at the Large Hadron Collider.
Date: February 23, 2009
Creator: Berger, C.F.; /MIT, LNS; Bern, Z.; /UCLA; Dixon, L.J.; /SLAC et al.
Object Type: Article
System: The UNT Digital Library
The Challenges to Coupling Dynamic Geospatial Models (open access)

The Challenges to Coupling Dynamic Geospatial Models

Many applications of modeling spatial dynamic systems focus on a single system and a single process, ignoring the geographic and systemic context of the processes being modeled. A solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling is challenging for both technical reasons, as well as conceptual reasons. This paper explores the benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, where information transfer between models is done by hand, to tight coupling, where two (or more) models are merged as one. To illustrate the challenges, a coupled model of Urbanization and Wildfire Risk is presented. This model, called Vesta, was applied to the Santa Barbara, California region (using real geospatial data), where Urbanization and Wildfires occur and recur, respectively. The preliminary results of the model coupling illustrate that coupled modeling can lead to insight into the consequences of processes acting on their own.
Date: June 23, 2006
Creator: Goldstein, N
Object Type: Article
System: The UNT Digital Library
Active Creation of Instrinsically Localized Vibrations in Uranium Using X-Ray and Neutron Scattering (open access)

Active Creation of Instrinsically Localized Vibrations in Uranium Using X-Ray and Neutron Scattering

In real materials, nonlinear forces cause the frequencies of vibrating atoms to depend on amplitude. As a consequence, a large-amplitude fluctuation on the scale of the atom spacing can develop a frequency that does not resonate with the normal modes, causing energy to become trapped in an intrinsically localized mode (ILM)--also called 'discrete breather' or 'lattice soliton'. As temperature is increased, entropy is expected to stabilize increased concentrations of these random hotspots. This mechanism, which spontaneously concentrates energy, has been observed in analogous systems on a larger scale, but direct sightings at the atomic scale have proved difficult. Two challenges have hampered progress: (1) the need to separate ILMs from modes associated with crystal imperfections, and (2) complications that arise at high temperatures, including feature broadening and multiphonon processes. Here we solve both of these problems by actively creating ILMs at low temperatures in {alpha}-uranium using high-energy inelastic x-ray and neutron scattering. The ILM creation excitation occurs at energies ten times higher than conventional lattice excitations, cleanly separating it from modes associated with crystal imperfections. The discovery of this excitation not only proves the existence of ILMs in uranium but also opens up a new route for finding ILMs in …
Date: August 23, 2007
Creator: Manley, M.; Alatas, A.; Trouw, F.; Hults, W.; Leu, B.; Lynn, J. et al.
Object Type: Article
System: The UNT Digital Library
Yucca Mountain Climate Technical Support Representative (open access)

Yucca Mountain Climate Technical Support Representative

The primary objective of Project Activity ORD-FY04-012, “Yucca Mountain Climate Technical Support Representative,” was to provide the Office of Civilian Radioactive Waste Management (OCRWM) with expertise on past, present, and future climate scenarios and to support the technical elements of the Yucca Mountain Project (YMP) climate program. The Climate Technical Support Representative was to explain, defend, and interpret the YMP climate program to the various audiences during Site Recommendation and License Application. This technical support representative was to support DOE management in the preparation and review of documents, and to participate in comment response for the Final Environmental Impact Statement, the Site Recommendation Hearings, the NRC Sufficiency Comments, and other forums as designated by DOE management. Because the activity was terminated 12 months early and experience a 27% reduction in budget, it was not possible to complete all components of the tasks as originally envisioned. Activities not completed include the qualification of climate datasets and the production of a qualified technical report. The following final report is an unqualified summary of the activities that were completed given the reduced time and funding.
Date: October 23, 2007
Creator: Sharpe, Saxon E.
Object Type: Text
System: The UNT Digital Library
Geologic Descriptions for the Solid-Waste Low Level Burial Grounds (open access)

Geologic Descriptions for the Solid-Waste Low Level Burial Grounds

This document provides the stratigraphic framework and six hydrogeologic cross sections and interpretations for the solid-waste Low Level Burial Grounds on the Hanford Site. Four of the new cross sections are located in the 200 West Area while the other two are located within the 200 East Area. The cross sections display sediments of the vadose zone and uppermost unconfined aquifer.
Date: September 23, 2007
Creator: Bjornstad, Bruce N. & Lanigan, David C.
Object Type: Report
System: The UNT Digital Library
Use of Molecular Modeling to Determine the Interaction and Competition of Gases within Coal for Carbon Dioxide Sequestration (open access)

Use of Molecular Modeling to Determine the Interaction and Competition of Gases within Coal for Carbon Dioxide Sequestration

A 3-dimensional coal structural model for the Argonne Premium Coal Pocahontas No. 3 has been generated. The model was constructed based on the wealth of structural information available in the literature with the enhancement that the structural diversity within the structure was represented implicitly (for the first time) based on image analysis of HRTEM in combination with LDMS data. The complex and large structural model (>10,000 carbon atoms) will serve as a basis for examining the interaction of gases within this low volatile bituminous coal. Simulations are of interest to permit reasonable simulations of the host-guest interactions with regard to carbon dioxide sequestration within coal and methane displacement from coal. The molecular structure will also prove useful in examining other coal related behavior such as solvent swelling, liquefaction and other properties. Molecular models of CO{sub 2} have been evaluated with water to analyze which classical molecular force-field parameters are the most reasonable to predict the interactions of CO{sub 2} with water. The comparison of the molecular force field models was for a single CO{sub 2}-H{sub 2}O complex and was compared against first principles quantum mechanical calculations. The interaction energies and the electrostatic interaction distances were used as criteria in the …
Date: February 23, 2003
Creator: Evanseck, Jeffrey D. & Madura, Jeffry D.
Object Type: Report
System: The UNT Digital Library
Hybrid Paper/Electronic Archival Collecting, Processing, and Reference: A View from SLAC (open access)

Hybrid Paper/Electronic Archival Collecting, Processing, and Reference: A View from SLAC

Real-time archiving of mixed paper and digital collections presents challenges not encountered in the primarily paper environment. A few recent examples from the archives of the Stanford Linear Accelerator Center highlight obstacles encountered, and attempted and contemplated solutions.
Date: May 23, 2008
Creator: Deken, Jean M.
Object Type: Article
System: The UNT Digital Library
Intense Ion Beam for Warm Dense Matter Physics (open access)

Intense Ion Beam for Warm Dense Matter Physics

The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam …
Date: May 23, 2008
Creator: Coleman, Joshua Eugene
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Measurements of the Propagation of EM Waves through the Vacuum Chamber of the PEP-II Low Energy Ring for Beam Diagnostics (open access)

Measurements of the Propagation of EM Waves through the Vacuum Chamber of the PEP-II Low Energy Ring for Beam Diagnostics

We present the results of our measurements of the electron cloud density in the PEP-II low energy ring (LER) by propagating a TE wave into the beam pipe. By connecting a signal generator to a beam position monitor button we can excite a signal above the vacuum chamber cut-off frequency and measure its propagation through the beam pipe with a spectrum analyzer connected to another button about 50 meters away. The measurement can be performed with different beam conditions and also at different settings of the solenoids used to reduce the build up of electrons. The presence of a modulation in the TE wave transmission, synchronous with the beam revolution frequency, which appear to increase in depth when the solenoids are switched off, seem to be directly correlated to the electron cloud density in the region between the two BPM's. In this paper we present and discuss the measurements taken in the Interaction Region 12 straight of the LER during 2006 and the first part of 2007.
Date: January 23, 2008
Creator: Byrd, John Michael; De Santis, S. & Pivi, MTF
Object Type: Article
System: The UNT Digital Library
2003 East Tennessee Technology Park Annual Illness and Injury Surveillance Report (open access)

2003 East Tennessee Technology Park Annual Illness and Injury Surveillance Report

Annual Illness and Injury Surveillance Program report for 2003 for the East Tennessee Technology Park (K-25).The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
Date: May 23, 2007
Creator: United States. Department of Energy. Office of Illness and Injury Prevention Programs.
Object Type: Report
System: The UNT Digital Library
Physical limits for high ion charge states in pulsed discharges in vacuum (open access)

Physical limits for high ion charge states in pulsed discharges in vacuum

Short-pulse, high-current discharges in vacuum were investigated with the goal to maximize the ion charge state number. In a direct extension of previous work [Appl. Phys. Lett. 92, 041502 (2008)], the role of pulse length, rate of current rise, and current amplitude was studied. For all experimental conditions, the usable (extractable) mean ion charge state could not be pushed beyond 7+. Instead, a maximum of the mean ion charge state (about 6+ to 7+ for most cathode materials) was found for a power of 2-3 MW dissipated in the discharge gap. The maximum is the result of two opposing processes that occur when the power is increased: (i) the formation of higher ion charge states, and (ii) a greater production of neutrals (both metal and non-metal), which reduces the charge state via charge exchange collisions.
Date: December 23, 2008
Creator: Yushkov, Georgy & Anders, Andre
Object Type: Article
System: The UNT Digital Library
Production of a sterile species: Quantum kinetics (open access)

Production of a sterile species: Quantum kinetics

Production of a sterile species is studied within an effective model of active-sterile neutrino mixing in a medium in thermal equilibrium. The quantum kinetic equations for the distribution functions and coherences are obtained from two independent methods: the effective action and the quantum master equation. The decoherence time scale for active-sterile oscillations is tau(dec)=2/Gamma(aa), but the evolution of the distribution functions is determined by the two different time scales associated with the damping rates of the quasiparticle modes in the medium: Gamma(1)=Gamma(aa)cos^2theta(m); Gamma(2)=Gamma(aa)sin^2theta(m) where Gamma(aa) is the interaction rate of the active species in the absence of mixing and theta(m) the mixing angle in the medium. These two time scales are widely different away from Mikheyev-Smirnov-Wolfenstein resonances and preclude the kinetic description of active-sterile production in terms of a simple rate equation. We give the complete set of quantum kinetic equations for the active and sterile populations and coherences and discuss in detail the various approximations. A generalization of the active-sterile transition probability in a medium is provided via the quantum master equation. We derive explicitly the usual quantum kinetic equations in terms of the"polarization vector" and show their equivalence to those obtained from the quantum master equation and effective …
Date: April 23, 2007
Creator: Ho, Chiu Man; Boyanovsky, D. & Ho, C.M.
Object Type: Article
System: The UNT Digital Library
Temperature effect on low-k dielectric thin films studied by ERDA (open access)

Temperature effect on low-k dielectric thin films studied by ERDA

Low-k dielectric materials are becoming increasingly interesting as alternative to SiO2 with device geometries shrinking beyond the 65 nm technology node. At elevated temperatures hydrogen migration becomes an important degradation mechanism for conductivity breakdown in semiconductor devices. The possibility of hydrogen release during the fabrication process is, therefore, of great interest in the understanding of device reliability. In this study, various low-k dielectric films were subjected to thermal annealing at temperatures that are generally used for device fabrication. Elastic recoil detection analysis (ERDA) was used to investigate compositional changes and hydrogen redistribution in thin films of plasma-enhanced tetraethylortho-silicate (PETEOS), phosphorus doped silicon glass (PSG), silicon nitride (SiN) and silicon oxynitride (SiON). Except for an initial hydrogen release from the surface region in films of PETEOS and PSG, the results indicate that the elemental composition of the films was stable for at least 2 hours at 450◦C.
Date: September 23, 2008
Creator: Jensen, Jens; Possnert, Göran & Zhang, Yanwen
Object Type: Article
System: The UNT Digital Library
An Instrument Design for the Accurate Determination of the Electron Beam Location in the Linac Coherent Light Source Undulator (open access)

An Instrument Design for the Accurate Determination of the Electron Beam Location in the Linac Coherent Light Source Undulator

The Linac Coherent Light Source (LCLS), currently under design, requires accurate alignment between the electron beam and each undulator's magnetic centerline. A beam finder wire (BFW) instrument has been developed to provide beam location information that is used to move the undulators to their appropriate positions. A BFW instrument is mounted at each of the 33 magnets in the undulator section. Beam detection is achieved by electrons impacting two carbon fiber wires and then sensing the downstream radiation. The wires are mounted vertically and horizontally on a wire card similar to that of a traditional wire scanner instrument. The development of the BFW presents several design challenges due to the need for high accuracy of the wires locations and the need for removal of the wires during actual operation of the LCLS (30 microns repeatability is required for the wire locations). In this paper, we present the technical specification, design criteria, mechanical design, and results from prototype tests for the BFW.
Date: January 23, 2008
Creator: Bailey, J. L.; Capatina, D.; Morgan, J. W. & Nuhn, H. D.
Object Type: Article
System: The UNT Digital Library