Empirical Study of Ne in H-Mode Pedestal in DIII-D (open access)

Empirical Study of Ne in H-Mode Pedestal in DIII-D

There is compelling empirical [1] and theoretical [2] evidence that the global confinement of H-mode discharges increases as the pedestal pressure or temperature increases. Therefore, confidence in the performance of future machines requires an ability to predict the pedestal conditions in those machines. At this time, both the theoretical and empirical understanding of transport in the pedestal are incomplete and are inadequate to predict pedestal conditions in present or future machines. Recent empirical results might be evidence of a fundamental relation between the electron temperature T{sub e} and electron density n{sub e} profiles in the pedestal. A data set from the ASDEX-Upgrade tokamak has shown that {eta}{sub e}, the ratio between the scale lengths of the n{sub e} and T{sub e} profiles, exhibits a value of about 2 throughout the pedestal, despite a large range of the actual density and temperature values [3]. Data from the DIII-D tokamak show that over a wide range of pedestal density, the width of the steep gradient region for the T{sub e} profile is about 1-2 times the corresponding width for the n{sub e} profile, where both widths are measured from the plasma edge [4]. Thus, the barrier in the density might form a …
Date: May 5, 2005
Creator: . Groebner, R. J.; Osborne, T. H.; Fenstermacher, M. E.; Leonard, A. W.; Mahdavi, M. A.; Snyder, P. B. et al.
System: The UNT Digital Library
Micromilling of Metal Alloys with Focused Ion Beam-Fabricated Tools (open access)

Micromilling of Metal Alloys with Focused Ion Beam-Fabricated Tools

This work combines focused ion beam sputtering and ultra-precision machining as a first step in fabricating microstructure in metals and alloys. Specifically, {approx}25{micro}m diameter micro-end mills are made from cobalt M42 high-speed steel and C2 micrograin tungsten carbide tool blanks by ion beam sputtering. A 20 keV focused gallium beam defines tool cutting edges having radii of curvature < 0.1{micro}m. Micro-end mills having 2, 4 and 5 cutting edges successfully machine small trenches in 6061-T4 aluminum, brass, 4340 steel and polymethyl methacrylate. Machined trench widths are approximately equal to the tool diameters and surface roughnesses (rms) are {approx}150 nm or less. Microtools are robust and operate for more than 6 hours without fracture. Results from ultra-precision machining aluminum at feed rates as high as 50 mm/minute are included.
Date: November 5, 1999
Creator: ADAMS,DAVID P.; VASILE,M.J.; BENAVIDES,GILBERT L. & CAMPBELL,ANN N.
System: The UNT Digital Library
Observations of Non-Close-Packed Arrangements in Multilayers of Passivated Gold Clusters (open access)

Observations of Non-Close-Packed Arrangements in Multilayers of Passivated Gold Clusters

The stacking of second and third layers of supercrystals of self-assembled passivated gold nanoparticles has been investigated using transmission electron microscopy. We report for the first time nanoparticles occupying the twofold saddle site in the third layer.
Date: October 5, 1999
Creator: AINDOW, M.; Brown, P.; Kiely, C. J.; Wellner, A. & Wilcoxon, Jess P.
System: The UNT Digital Library
Measurement of the Inelastic Proton-Proton Cross-Section at sqrt{s}=7 TeV with the ATLAS Detector (open access)

Measurement of the Inelastic Proton-Proton Cross-Section at sqrt{s}=7 TeV with the ATLAS Detector

None
Date: June 5, 2013
Creator: Aad, Georges
System: The UNT Digital Library
The Dynamic Response of Thick-Liquid Shielding in Z-IFE Reactors (open access)

The Dynamic Response of Thick-Liquid Shielding in Z-IFE Reactors

A major concern in the design of thick-liquid protected inertial fusion reactors of all types is the dynamic response of the shielding liquid to the pulsed explosions. Induced liquid motion can stress and damage solid chamber structures such as the firstwall. In a z-pinch based inertial fusion (Z-IFE) reactor this issue becomes particularly critical due to the relatively large proposed target yields of several GJ. In this paper we summarize an analysis of the liquid response taking into account ablation of target facing surfaces, pocket venting, and neutron isochoric heating. The impact of varying several reactor parameters is also discussed.
Date: October 5, 2005
Creator: Abbott, R P
System: The UNT Digital Library
Neutral Kaon Interferometry in Au+Au collisions at sqrt(s_NN) =200 GeV (open access)

Neutral Kaon Interferometry in Au+Au collisions at sqrt(s_NN) =200 GeV

We present the first statistically meaningful results fromtwo-K0s interferometry in heavy-ion collisions. A model that takes theeffect of the strong interaction into account has been used to fit themeasured correlation function. The effects of single and coupled channelwere explored. At the mean transverse mass m_T = 1.07 GeV, we obtain thevalues R = 4.09 +- 0.46 (stat.) +- 0.31 (sys) fm and lambda = 0.92 +-0.23 (stat) +- 0.13 (sys), where R and lambda are the invariant radiusand chaoticity parameters respectively. The results are qualitativelyconsistent with m_T systematics established with pions in a scenariocharacterized by a strong collective flow.
Date: August 5, 2006
Creator: Abelev, B. I.; Adams, J.; Aggarwal, M. M.; Ahammed, Z.; Amonett, J.; Anderson, B. D. et al.
System: The UNT Digital Library
Pressure-induced isostructural transition in PdN2 (open access)

Pressure-induced isostructural transition in PdN2

We show that a synthesized Pd-N compound crystallize into the pyrite structure by comparison of experimental and calculated Raman intensities. The decreasing Raman intensities with decreasing pressure is explained by a closing of the fundamental band gap. We further discuss the experimental decomposition of this compound at 11 GPa in terms of an isostructural transition within the pyrite structure.
Date: March 5, 2010
Creator: Aberg, D; Erhart, P; Crowhurst, J; Zaug, J M; Goncharov, A F & Sadigh, B
System: The UNT Digital Library
Behavior of W and WSi(x) Contact Metallization on n- and p- Type GaN (open access)

Behavior of W and WSi(x) Contact Metallization on n- and p- Type GaN

Sputter-deposited W-based contacts on p-GaN (N{sub A} {approximately} 10{sup 18} cm{sup {minus}3}) display non-ohmic behavior independent of annealing temperature when measured at 25 C. The transition to ohmic behavior occurs above {approximately} 250 C as more of the acceptors become ionized. The optimum annealing temperature is {approximately} 700 C under these conditions. These contacts are much more thermally stable than the conventional Ni/Au metallization, which shows a severely degraded morphology even at 700 C. W-based contacts may be ohmic as-deposited on very heavily doped n-GaN, and the specific contact resistance improves with annealing up to {approximately} 900 C.
Date: January 5, 1999
Creator: Abernathy, C. R.; Cao, X. A.; Cole, M. W.; Eizenberg, M.; Lothian, J. R.; Pearton, S. J. et al.
System: The UNT Digital Library
Inductively Coupled Plasma Etching of III-Nitrides in Cl(2)/Xe,Cl(2)/Ar and Cl(2)/He (open access)

Inductively Coupled Plasma Etching of III-Nitrides in Cl(2)/Xe,Cl(2)/Ar and Cl(2)/He

The role of additive noble gases He, Ar and Xe to C&based Inductively Coupled Plasmas for etching of GaN, AIN and InN were examined. The etch rates were a strong function of chlorine concentration, rf chuck power and ICP source power. The highest etch rates for InN were obtained with C12/Xe, while the highest rates for AIN and GaN were obtained with C12/He. Efficient breaking of the 111-nitrogen bond is crucial for attaining high etch rates. The InN etching was dominated by physical sputtering, in contrast to GaN and AIN. In the latter cases, the etch rates were limited by initial breaking of the III-nitrogen bond. Maximum selectivities of -80 for InN to GaN and InN to AIN were obtained.
Date: January 5, 1999
Creator: Abernathy, C.R.; Cho, H.; Donovan, S.M.; Hahn, Y.B.; Hays, D.C.; Jung, K.B. et al.
System: The UNT Digital Library
RECERTIFICATION OF THE MODEL 9977 RADIOACTIVE MATERIAL PACKAGING (open access)

RECERTIFICATION OF THE MODEL 9977 RADIOACTIVE MATERIAL PACKAGING

The Model 9977 Packaging was initially issued a Certificate of Compliance (CoC) by the Department of Energy’s Office of Environmental Management (DOE-EM) for the transportation of radioactive material (RAM) in the Fall of 2007. This first CoC was for a single radioactive material and two packing configurations. In the five years since that time, seven Addendums have been written to the Safety Analysis Report for Packaging (SARP) and five Letter Amendments have been written that have authorized either new RAM contents or packing configurations, or both. This paper will discuss the process of updating the 9977 SARP to include all the contents and configurations, including the addition of a new content, and its submittal for recertification.
Date: June 5, 2013
Creator: Abramczyk, G.; Bellamy, S.; Loftin, B. & Nathan, S.
System: The UNT Digital Library
PRECEDENTS FOR AUTHORIZATION OF CONTENTS USING DOSE RATE MEASUREMENTS (open access)

PRECEDENTS FOR AUTHORIZATION OF CONTENTS USING DOSE RATE MEASUREMENTS

For the transportation of Radioactive Material (RAM) packages, the requirements for the maximum allowed dose rate at the package surface and in its vicinity are given in Title 10 of the Code of Federal Regulations, Section 71.47. The regulations are based on the acceptable dose rates to which the public, workers, and the environment may be exposed. As such, the regulations specify dose rates, rather than quantity of radioactive isotopes and require monitoring to confirm the requirements are met. 10CFR71.47 requires that each package of radioactive materials offered for transportation must be designed and prepared for shipment so that under conditions normally incident to transportation the radiation level does not exceed 2 mSv/h (200 mrem/h) at any point on the external Surface of the package, and the transport index does not exceed 10. Before shipment, the dose rate of the package is determined by measurement, ensuring that it conforms to the regulatory limits, regardless of any analyses. This is the requirement for all certified packagings. This paper discusses the requirements for establishing the dose rates when shipping RAM packages and the precedents for meeting these requirements by measurement.
Date: June 5, 2012
Creator: Abramczyk, G.; Bellamy, S.; Nathan, S. & Loftin, B.
System: The UNT Digital Library
DEVELOPMENT OF THE H1700 SHIPPING PACKAGE (open access)

DEVELOPMENT OF THE H1700 SHIPPING PACKAGE

The H1700 Package is based on the DOE-EM Certified 9977 Packaging. The H1700 will be certified by the Packaging Certification Division of the National Nuclear Security Administration for the shipment of plutonium by air by the United Stated Military both within the United States and internationally. The H1700 is designed to ship radioactive contents in assemblies of Radioisotope Thermoelectric Generators (RTGs) or arrangements of nested food-pack cans. The RTG containers are designed and tested to remain leaktight during transport, handling, and storage; however, their ability to remain leaktight during transport in the H1700 is not credited. This paper discusses the design and special operation of the H1700.
Date: June 5, 2009
Creator: Abramczyk, G.; Loftin, B. & Mann, P.
System: The UNT Digital Library
Variability of Ocean Heat Uptake: Reconciling Observations and Models (open access)

Variability of Ocean Heat Uptake: Reconciling Observations and Models

This study examines the temporal variability of ocean heat uptake in observations and in climate models. Previous work suggests that coupled Atmosphere-Ocean General Circulation Models (A-OGCMs) may have underestimated the observed natural variability of ocean heat content, particularly on decadal and longer timescales. To address this issue, we rely on observed estimates of heat content from the 2004 World Ocean Atlas (WOA-2004) compiled by Levitus et al. (2005). Given information about the distribution of observations in WOA-2004, we evaluate the effects of sparse observational coverage and the infilling that Levitus et al. use to produce the spatially-complete temperature fields required to compute heat content variations. We first show that in ocean basins with limited observational coverage, there are important differences between ocean temperature variability estimated from observed and infilled portions of the basin. We then employ data from control simulations performed with eight different A-OGCMs as a test-bed for studying the effects of sparse, space- and time-varying observational coverage. Subsampling model data with actual observational coverage has a large impact on the inferred temperature variability in the top 300 and 3000 meters of the ocean. This arises from changes in both sampling depth and in the geographical areas sampled. Our …
Date: May 5, 2005
Creator: AchutaRao, K. M.; Santer, B. D.; Gleckler, P. J.; Taylor, K.; Pierce, D.; Barnett, T. et al.
System: The UNT Digital Library
Ion Beam Sputter Fabrication of Micro-Grooving and Micro-Threading Tools (open access)

Ion Beam Sputter Fabrication of Micro-Grooving and Micro-Threading Tools

This paper presents techniques for fabricating microscopic, nonplanar features in a variety of materials. Micro-grooving and micro-threading tools having cutting dimensions of 10-30{micro}m are made by focused ion beam sputtering and used in ultra-precision machining. Tool fabrication involves directing a 20 keV gallium beam at polished cylindrical punches made of cobalt M42 high-speed steel or C2 tungsten carbide. This creates cutting edges having radii of curvature less than 0.4 {micro}m, and rake features similar to conventional lathe tools. Clearance for minimizing frictional drag of a tool results from the sputter yield dependence on ion herd target incidence angle. Numerically controlled, ultra-precision machining with micro-grooving tools results in a close matching between tool width and feature size. Microtools controllably machine 13 {micro}m wide, 4 {micro}m deep, helical grooves in polymethyl methacrylate and 6061-T6 Al cylindrical substrates. Micro-grooving tools also fabricate sinusoidal waveform features in polished metal substrates.
Date: November 5, 1999
Creator: Adams,David P.; Vasile,M. J. & Krishnan,A. S. M.
System: The UNT Digital Library
Improving Conservation for First-Order System Least Squares Finite-Element Methods (open access)

Improving Conservation for First-Order System Least Squares Finite-Element Methods

None
Date: September 5, 2012
Creator: Adler, J H & Vassilevski, P S
System: The UNT Digital Library
Improved resolution of hydrocarbon structures and constitutional isomers in complex mixtures using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry (GC-VUV-MS) (Supplementary Info) (open access)

Improved resolution of hydrocarbon structures and constitutional isomers in complex mixtures using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry (GC-VUV-MS) (Supplementary Info)

Understanding the composition of complex hydrocarbon mixtures is important for environmental studies in a variety of fields, but many prevalent compounds cannot be confidently identified using traditional gas chromatography-mass spectrometry (GC-MS) techniques. This work uses vacuum-ultraviolet (VUV) ionization to elucidate the structures of a traditionally"unresolved complex mixture" by separating components by GC retention time, tR, and mass-to-charge ratio, m/Q, which are used to determine carbon number, NC, and the number of rings and double bonds, NDBE. Constitutional isomers are resolved based on tR, enabling the most complete quantitative analysis to date of structural isomers in an environmentally-relevant hydrocarbon mixture. Unknown compounds are classified in this work by carbon number, degree of saturation, presence of rings, and degree of branching, providing structural constraints. The capabilities of this analysis are explored using diesel fuel, in which constitutional isomer distribution patterns are shown to be reproducible between carbon numbers and follow predictable rules. Nearly half of the aliphatic hydrocarbon mass is shown to be branched, suggesting branching is more important in diesel fuel than previously shown. The classification of unknown hydrocarbons and the resolution of constitutional isomers significantly improves resolution capabilities for any complex hydrocarbon mixture.
Date: September 5, 2011
Creator: Aerosol Dynamics Inc.,; Aerodyne Research, Inc.,; Tofwerk AG, Thun, Switzerland; Isaacman, Gabriel; Wilson, Kevin R.; Chan, Arthur W. H. et al.
System: The UNT Digital Library
Geometric transitions and D-term SUSY breaking (open access)

Geometric transitions and D-term SUSY breaking

We propose a new way of using geometric transitions to study metastable vacua in string theory and certain confining gauge theories. The gauge theories in question are N=2 supersymmetric theories deformed to N=1 by superpotential terms. We first geometrically engineer supersymmetry-breaking vacua by wrapping D5 branes on rigid 2-cycles in noncompact Calabi-Yau geometries, such that the central charges of the branes are misaligned. In a limit of slightly misaligned charges, this has a gauge theory description, where supersymmetry is broken by Fayet-Iliopoulos D-terms. Geometric transitions relate these configurations to dual Calabi-Yaus with fluxes, where H_RR, H_NS and dJ are all nonvanishing. We argue that the dual geometry can be effectively used to study the resulting non-supersymmetric, confining vacua
Date: November 5, 2007
Creator: Aganagic, Mina; Aganagic, Mina & Beem, Christopher
System: The UNT Digital Library
Modeling Soil/Radionuclide Removal for Yucca Mountain Biosphere Dose Assessments (open access)

Modeling Soil/Radionuclide Removal for Yucca Mountain Biosphere Dose Assessments

None
Date: December 5, 2000
Creator: Aguilar, R. & Smith, A. J.
System: The UNT Digital Library
Progress on the Europium Neutron-Capture Study using DANCE (open access)

Progress on the Europium Neutron-Capture Study using DANCE

The accurate measurement of neutron-capture cross sections of the Eu isotopes is important for many reasons including nuclear astrophysics and nuclear diagnostics. Neutron capture excitation functions of {sup 151,153}Eu targets were measured recently using a 4{pi} {gamma}-ray calorimeter array DANCE located at the Los Alamos Neutron Science Center for E{sub n} = 0.1-100 keV. The progress on the data analysis efforts is given in the present paper. The {gamma}-ray multiplicity distributions for the Eu targets and Be backing are significantly different. The {gamma}-ray multiplicity distribution is found to be the same for different neutron energies for both {sup 151}Eu and {sup 153}Eu. The statistical simulation to model the {gamma}-ray decay cascade is summarized.
Date: September 5, 2006
Creator: Agvaanluvsan, U.; Becker, J. A.; Macri, R. A.; Parker, W.; Wilk, P.; Wu, C. Y. et al.
System: The UNT Digital Library
The role of parallel heat transport in the relation between upstream scrape-off layer widths and target heat flux width in H-mode plasmas of NSTX. (open access)

The role of parallel heat transport in the relation between upstream scrape-off layer widths and target heat flux width in H-mode plasmas of NSTX.

The physics of parallel heat transport was tested in the Scrape-off Layer (SOL) plasma of the National Spherical Torus Experiment (NSTX) [M. Ono, et al., Nucl. Fusion 40, 557 (2000) and S. M. Kaye, et al., Nucl. Fusion 45, S168 (2005)] tokamak by comparing the upstream electron temperature (T{sub e}) and density (n{sub e}) profiles measured by the mid-plane reciprocating probe to the heat flux (q{sub {perpendicular}}) profile at the divertor plate measured by an infrared (IR) camera. It is found that electron conduction explains the near SOL width data reasonably well while the far SOL, which is in the sheath limited regime, requires an ion heat flux profile broader than the electron one to be consistent with the experimental data. The measured plasma parameters indicate that the SOL energy transport should be in the conduction-limited regime for R-R{sub sep} (radial distance from the separatrix location) < 2-3 cm. The SOL energy transport should transition to the sheath-limited regime for R-R{sub sep} > 2-3cm. The T{sub e}, n{sub e}, and q{sub {perpendicular}} profiles are better described by an offset exponential function instead of a simple exponential. The conventional relation between mid plane electron temperature decay length ({lambda}{sub Te}) and target …
Date: January 5, 2009
Creator: Ahn, J W; Boedo, J A; Maingi, R & Soukhanovskii, V A
System: The UNT Digital Library
Determining thermal diffusivity and defect attributes in ceramic matrix composites by infrared imaging. (open access)

Determining thermal diffusivity and defect attributes in ceramic matrix composites by infrared imaging.

Ceramic matrix composites are being developed for numerous high temperature applications, including rotors and combustors for advanced turbine engines, heat exchanger and hot-gas filters for coal gasification plants. Among the materials of interest are silicon-carbide-fiber-reinforced-silicon-carbide (SiC{sub (f)}/SiC), silicon-carbide-fiber-reinforced-silicon-nitride (SiC{sub (f)}/Si{sub 3}N{sub 4}), aluminum-oxide-reinforced-alumina (Al{sub 2}O{sub 3(f)}/Al{sub 2}O{sub 3}), etc. In the manufacturing of these ceramic composites, the conditions of the fiber/matrix interface are critical to the mechanical and thermal behavior of the component. Defects such as delaminations and non-uniform porosity can directly effect the performance. A nondestructive evaluation (NDE) method, developed at Argonne National Laboratory has proved beneficial in analyzing as-processed conditions and defect detection created during manufacturing. This NDE method uses infrared thermal imaging for fill-field quantitative measurement of the distribution of thermal diffusivity in large components. Intensity transform algorithms have been used for contrast enhancement of the output image. Nonuniformity correction and automatic gain control are used to dynamically optimize video contrast and brightness, providing additional resolution in the acquired images. Digital filtering, interpolation, and least-squares-estimation techniques have been incorporated for noise reduction and data acquisition. The Argonne NDE system has been utilized to determine thermal shock damage, density variations, and variations in fiber coating in a full …
Date: December 5, 1997
Creator: Ahuja, S.; Ellingson, W. A.; Koehl, E. R. & Stuckey, J.
System: The UNT Digital Library
An Integrated Hydrologic Bayesian Multi-Model Combination Framework: Confronting Input, parameter and model structural uncertainty in Hydrologic Prediction (open access)

An Integrated Hydrologic Bayesian Multi-Model Combination Framework: Confronting Input, parameter and model structural uncertainty in Hydrologic Prediction

This paper presents a new technique--Integrated Bayesian Uncertainty Estimator (IBUNE) to account for the major uncertainties of hydrologic rainfall-runoff predictions explicitly. The uncertainties from the input (forcing) data--mainly the precipitation observations and from the model parameters are reduced through a Monte Carlo Markov Chain (MCMC) scheme named Shuffled Complex Evolution Metropolis (SCEM) algorithm which has been extended to include a precipitation error model. Afterwards, the Bayesian Model Averaging (BMA) scheme is employed to further improve the prediction skill and uncertainty estimation using multiple model output. A series of case studies using three rainfall-runoff models to predict the streamflow in the Leaf River basin, Mississippi are used to examine the necessity and usefulness of this technique. The results suggests that ignoring either input forcings error or model structural uncertainty will lead to unrealistic model simulations and their associated uncertainty bounds which does not consistently capture and represent the real-world behavior of the watershed.
Date: May 5, 2006
Creator: Ajami, N. K.; Duan, Q. & Sorooshian, S.
System: The UNT Digital Library
Structure of the Lithosphere and Upper Mantle Across the Arabian Peninsula (open access)

Structure of the Lithosphere and Upper Mantle Across the Arabian Peninsula

Analysis of modern broadband (BB) waveform data allows for the inference of seismic velocity structure of the crust and upper mantle using a variety of techniques. This presentation will report inferences of seismic structure of the Arabian Plate using BB data from various networks. Most data were recorded by the Saudi Arabian National Digital Seismic Network (SANDSN) which consists of 38 (26 BB, 11 SP) stations, mostly located on the Arabian Shield. Additional data were taken from the 1995-7 Saudi Arabian IRIS-PASSCAL Deployment (9 BB stations) and other stations across the Peninsula. Crustal structure, inferred from teleseismic P-wave receiver functions, reveals thicker crust in the Arabian Platform (40-45 km) and the interior of the Arabian Shield (35-40 km) and thinner crust along the Red Sea coast. Lithospheric thickness inferred from teleseismic S-wave receiver functions reveals very thin lithosphere (40-80 km) along the Red Sea coast which thickens rapidly toward the interior of the Arabian Shield (100-120 km). We also observe a step of 20-40 km in lithospheric thickness across the Shield-Platform boundary. Seismic velocity structure of the upper mantle inferred from teleseismic P- and S-wave travel time tomography reveals large differences between the Shield and Platform, with the Shield being …
Date: January 5, 2007
Creator: Al-Amri, A. & Rodgers, A.
System: The UNT Digital Library
Empirical Calculations of {sup 29}Si NMR Chemical Shielding Tensors: A Partial Charge Model Investigation of Hydrolysis in Organically Modified Alkoxy Silanes (open access)

Empirical Calculations of {sup 29}Si NMR Chemical Shielding Tensors: A Partial Charge Model Investigation of Hydrolysis in Organically Modified Alkoxy Silanes

Organically modified alkoxy silanes play an important role in tailoring different properties of silica produced by the sol-gel method. Changes in the size and functionality of the organic group allows control of both physical and chemical properties of the resulting gel, with the kinetics of the polymerization process playing an important role in the design of new siloxane materials. High resolution {sup 29}Si NMR has proven to be valuable tool for monitoring the polymerization reaction, and has been used to investigate a variety of organically modified alkoxy silane systems.
Date: August 5, 1999
Creator: Alam, Todd M. & Henry, Marc
System: The UNT Digital Library