Experimental Results of NWCF Run H4 Calcine Dissolution Studies Performed in FY-98 and -99 (open access)

Experimental Results of NWCF Run H4 Calcine Dissolution Studies Performed in FY-98 and -99

Dissolution experiments were performed on actual samples of NWCF Run H-4 radioactive calcine in fiscal years 1998 and 1999. Run H-4 is an aluminum/sodium blend calcine. Typical dissolution data indicates that between 90-95 wt% of H-4 calcine can be dissolved using 1gram of calcine per 10 mLs of 5-8M nitric acid at boiling temperature. Two liquid raffinate solutions composed of a WM-188/aluminum nitrate blend and a WM-185/aluminum nitrate blend were converted into calcine at the NWCF. Calcine made from each blend was collected and transferred to RAL for dissolution studies. The WM-188/aluminum nitrate blend calcine was dissolved with resultant solutions used as feed material for separation treatment experimentation. The WM-185/aluminum nitrate blend calcine dissolution testing was performed to determine compositional analyses of the dissolved solution and generate UDS for solid/liquid separation experiments. Analytical fusion techniques were then used to determine compositions of the solid calcine and UDS from dissolution. The results from each of these analyses were used to calculate elemental material balances around the dissolution process, validating the experimental data. This report contains all experimental data from dissolution experiments performed using both calcine blends.
Date: August 1, 2001
Creator: Garn, Troy Gerry; Herbst, Ronald Scott; Batcheller, Thomas Aquinas & Sierra, Tracy Laureena
System: The UNT Digital Library
LDRD final report backside localization of open and shorted IC interconnections LDRD Project (FY98 and FY 99) (open access)

LDRD final report backside localization of open and shorted IC interconnections LDRD Project (FY98 and FY 99)

Two new failure analysis techniques have been developed for backside and front side localization of open and shorted interconnections on ICs. These scanning optical microscopy techniques take advantage of the interactions between IC defects and localized heating using a focused infrared laser ({lambda} = 1,340 nm). Images are produced by monitoring the voltage changes across a constant current supply used to power the IC as the laser beam is scanned across the sample. The methods utilize the Seebeck Effect to localize open interconnections and Thermally-Induced Voltage Alteration (TIVA) to detect shorts. Initial investigations demonstrated the feasibility of TIVA and Seebeck Effect Imaging (SEI). Subsequent improvements have greatly increased the sensitivity of the TIVA/SEI system, reducing the acquisition times by more than 20X and localizing previously unobserved defects. The interaction physics describing the signal generation process and several examples demonstrating the localization of opens and shorts are described. Operational guidelines and limitations are also discussed. The system improvements, non-linear response of IC defects to heating, modeling of laser heating and examples using the improved system for failure analysis are presented.
Date: January 1, 2000
Creator: Cole, E. I., Jr.; Tangyunyong, P.; Benson, D. A. & Barton, D. L.
System: The UNT Digital Library
Progress report of FY 1998 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes (open access)

Progress report of FY 1998 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes

Previously, the proposers have delivered to ARM a documented algorithm, that is now applied operationally, and which derives water vapor profiles from combined remote sensor measurements of water vapor radiometers, cloud-base ceilometers, and radio acoustic sounding systems (RASS). With the expanded deployment of a Raman lidar at the CART Central Facility, high quality, high vertical-resolution, water vapor profiles will be provided during nighttime clear conditions, and during clear daytime conditions, to somewhat lower altitudes. The object of this effort is to use Kalman Filtering, previously applied to the combination of nighttime Raman lidar and microwave radiometer data, to derive high-quality water vapor profiles, during non-precipitating conditions, from data routinely available at the CART site. Input data to the algorithm would include: Raman lidar data, highly quality-controlled data of integrated moisture from microwave radiometers and GPS, RASS, and radiosondes. The focus of this years activities has been on the intercomparison of data obtained during the Water Vapor Intensive Operating Period'97 at the SGP CART site in central Oklahoma.
Date: October 1, 1999
Creator: Westwater, Edgeworth R. & Han, Yong
System: The UNT Digital Library
Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes - FY-98 Final Report for LDRD 2349 (open access)

Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes - FY-98 Final Report for LDRD 2349

The purpose of LDRD #2349, Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes, was to develop a set of tools that would allow the user to, based on the chemical composition of a waste stream to be immobilized, predict the durability (leach behavior) of the final waste form and the phase assemblages present in the final waste form. The objectives of the project were: • investigation, testing and selection of thermochemical code • development of auxiliary thermochemical database • synthesis of materials for leach testing • collection of leach data • using leach data for leach model development • thermochemical modeling The progress toward completion of these objectives and a discussion of work that needs to be completed to arrive at a logical finishing point for this project will be presented.
Date: August 1, 1999
Creator: Kessinger, Glen Frank; Nelson, Lee Orville; Grandy, Jon Drue; Zuck, Larry Douglas; Kong, Peter Chuen Sun & Anderson, Gail
System: The UNT Digital Library
DISCOM2: Distance Computing the SP2 Pilot FY98 Report (open access)

DISCOM2: Distance Computing the SP2 Pilot FY98 Report

As a way to bootstrap the DISCOM(2) Distance Computing Program the SP2 Pilot Project was launched in March 1998. The Pilot was directed towards creating an environment to allow Sandia users to run their applications on the Accelerated Strategic Computing Initiative's (ASCI) Blue Pacific computation platform, the unclassified IBM SP2 platform at Lawrence Livermore National Laboratory (LLNL). The DISCOM(2) Pilot leverages the ASCI PSE (Problem solving Environment) efforts in networking and services to baseline the performance of the current system. Efforts in the following areas of the pilot are documented: applications, services, networking, visualization, and the system model. It details not only the running of two Sandia codes CTH and COYOTE on the Blue Pacific platform, but also the buildong of the Sandia National Laboratories (SNL) proxy environment of the RS6000 platforms to support the Sandia users.
Date: May 1, 1999
Creator: Beiriger, Judy; Byers, Rupert K.; Ernest, Martha J.; Goudy, Sue P.; Noe, John P.; Pratt, Thomas J. et al.
System: The UNT Digital Library
Federal Geothermal Geoscience Research Fiscal Year 1998 (open access)

Federal Geothermal Geoscience Research Fiscal Year 1998

None
Date: May 1, 1999
Creator: unknown
System: The UNT Digital Library
Laboratory directed research and development FY98 annual report (open access)

Laboratory directed research and development FY98 annual report

In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the …
Date: May 1, 1999
Creator: Al-Ayat, R & Holzrichter, J
System: The UNT Digital Library
Core Capabilities and Technical Enhancement -- FY-98 Annual Report (open access)

Core Capabilities and Technical Enhancement -- FY-98 Annual Report

The Core Capability and Technical Enhancement (CC&TE) Program, a part of the Verification, Validation, and Engineering Assessment Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening the technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Office of Environmental Management (EM). An analysis of EM's science and technology needs as well as the technology investments currently being made by EM across the complex was used to formulate a portfolio of research activities designed to address EM's needs without overlapping work being done elsewhere. An additional purpose is to enhance and maintain the technical capabilities and research infrastructure at the INEEL. This is a progress report for fiscal year 1998 for the five CC&TE research investment areas: (a) transport aspects of selective mass transport agents, (b) chemistry of environmental surfaces, (c) materials dynamics, (d) characterization science, and (e) computational simulation of mechanical and chemical systems. In addition to the five purely technical research areas, this report deals with the science and technology foundations element of the CC&TE from the standpoint of program management and complex-wide …
Date: April 1, 1999
Creator: Miller, David Lynn
System: The UNT Digital Library
Core capabilities and technical enhancement, FY-98 annual report (open access)

Core capabilities and technical enhancement, FY-98 annual report

The Core Capability and Technical Enhancement (CCTE) Program, a part of the Verification, Validation, and Engineering Assessment Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening the technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Department of Energy's Office of Environmental Management (EM). An analysis of EM's science and technology needs as well as the technology investments currently being made by EM across the complex was used to formulate a portfolio of research activities designed to address EM's needs without overlapping work being done elsewhere. An additional purpose is to enhance and maintain the technical capabilities and research infrastructure at the INEEL. This is a progress report for fiscal year 1998 for the five CCTE research investment areas: (a) transport aspects of selective mass transport agents, (b) chemistry of environmental surfaces, (c) materials dynamics, (d) characterization science, and (e) computational simulation of mechanical and chemical systems. In addition to the five purely technical research areas, this report deals with the science and technology foundations element of the CCTE from the standpoint of program …
Date: April 1, 1999
Creator: Miller, D.L.
System: The UNT Digital Library
Energy Storage Systems Program Report for FY98 (open access)

Energy Storage Systems Program Report for FY98

Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the U.S. Department of Energy's Office of Power Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1998.
Date: April 1, 1999
Creator: Butler, P.C.
System: The UNT Digital Library
Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report (open access)

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.
Date: March 1, 1999
Creator: Herbst, Alan Keith; Mc Cray, John Alan; Rogers, Adam Zachary; Simmons, R. F. & Palethorpe, S. J.
System: The UNT Digital Library
Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report (open access)

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.
Date: March 1, 1999
Creator: Herbst, A. K.; McCray, J. A.; Rogers, A. Z.; Simmons, R. F. & Palethorpe, S. J.
System: The UNT Digital Library
Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report (open access)

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.
Date: March 1, 1999
Creator: Herbst, A. K.; McCray, J. A.; Rogers, A. Z.; Simmons, R. F. & Palethrope, S. J.
System: The UNT Digital Library
Annual Report - FY 1998, Shipments to and from the Nevada Test Site (NTS) (open access)

Annual Report - FY 1998, Shipments to and from the Nevada Test Site (NTS)

This report summarizes waste shipments to the Nevada Test Site Radioactive Waste Management Sites at Area 3 and Area 5 during fiscal year 1998. In addition this report provides a summary evaluation of each shipping campaign by source (waste generator) which identifies observable incidents, if any, associated with the actual waste shipments.
Date: February 1, 1999
Creator: United States. Department of Energy. Nevada Operations Office.
System: The UNT Digital Library
U.S. Department of Energy fiscal year 1998 accountability report (open access)

U.S. Department of Energy fiscal year 1998 accountability report

This report, the Department of Energy`s first Accountability Report, is part of an effort to better measure how the Department of Energy is serving the American taxpayers; the results achieved; and the cost-effectiveness of the work. By integrating the Department`s FY 1998 performance results, financial status, and management controls, this report is a useful tool and provides a status report on the Department`s performance in FY 1998. It presents a clearer picture of the return on the investment of the resources entrusted to this agency. After thorough review by the Office of the Inspector General, with one exception, the financial statements have been found to present fairly the financial position of the Department in conformity with Federal accounting standards. Overall, the Department has reasonable assurance that DOE has management controls in place to ensure that operational activities are efficient and effective and comply with the law. Ten challenges where management controls can be strengthened have been identified.
Date: February 1, 1999
Creator: unknown
System: The UNT Digital Library
Fiscal Year 1998 Well Installation, Plugging and Abandonment, and Redevelopment summary report Y-12 Plant, Oak Ridge, Tennessee (open access)

Fiscal Year 1998 Well Installation, Plugging and Abandonment, and Redevelopment summary report Y-12 Plant, Oak Ridge, Tennessee

This report summarizes the well installation, plugging and abandonment, and redevelopment activities conducted during the federal fiscal year (FY) 1998 at the Y-12 Plant, Oak Ridge, Tennessee. Five new groundwater monitoring wells were installed at the Y-12 Plant under the FY 1998 drilling program. Two of the wells are located in west Bear Creek Valley, one is in the eastern Y-12 Plant area near Lake Reality, and two are located near the Oil Landfarm Waste Management Area, which were installed by Bechtel Jacobs Company LLC (Bechtel Jacobs) as part of a site characterization activity for the Oak Ridge Reservation (ORR) Disposal Cell. Also, two existing wells were upgraded and nine temporary piezometers were installed to characterize hydrogeologic conditions at the Disposal Cell site. In addition, 40 temporary piezometers were installed in the Boneyard/Bumyard area of Bear Creek Valley by Bechtel Jacobs as part of the accelerated remedial actions conducted by the Environmental Restoration Program. Ten monitoring wells at the Y-12 Plant were decommissioned in FY 1998. Two existing monitoring wells were redeveloped during FY 1998 (of these, GW-732 was redeveloped tsvice). All well installation and development (including redevelopment) was conducted following industry-standard methods and approved procedures from the Environmental Surveillance …
Date: December 1, 1998
Creator: unknown
System: The UNT Digital Library
2020 Vision Project Summary, FY98 (open access)

2020 Vision Project Summary, FY98

The 2020 Vision project began in 1996 with two participating teachers and four classes. It has since grown to comprise more than a dozen participating teachers and hundreds of students across the country. Much of this growth took place in FY98, thanks to the accomplishment of several major goals: implementation of a mentor program, enhanced teacher training, a mid-year conference for students, recruitment of distant schools, and the development of an interactive Web site. The first part of this report describes these accomplishments, as well as future directions for 2020 Vision. The second part summarized the scenarios students wrote during the 1997-98 school year. it identifies recurrent themes in the students' scenarios and compares/contrasts them with scenarios written in the first two years of the project.
Date: November 1, 1998
Creator: Munoz, A.; Clausen, J. C.; Scott, K. P. & Gordon, K. W.
System: The UNT Digital Library
FY98 final report for the expedited technology demonstration project: demonstration test results for the integrated MSO waste treatment system (open access)

FY98 final report for the expedited technology demonstration project: demonstration test results for the integrated MSO waste treatment system

Molten Salt Oxidation (MSO) is a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility in which an integrated pilot-scale MSO treatment system is being tested and demonstrated. The system consists of a MSO vessel with a dedicated off-gas treatment system, a salt recycle system, feed preparation equipment, and a ceramic final waste forms immobilization system. This integrated system was designed and engineered based on operational experience with an engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. The MSO/off-gas system has been operational since December 1997. The salt recycle system and the ceramic final forms immobilization became operational in May and August, 1998, respectively. We have tested the MSO facility with various organic feeds, including chlorinated solvents, tributyl phosphate/kerosene, PCB-contaminated waste oils & solvents, booties, plastic pellets, ion exchanged resins, activated carbon, radioactive-spiked organics, and well-characterized low-level liquid mixed wastes. MSO is shown to be a versatile technology for hazardous waste treatment and may be a solution to many waste disposal problems in DOE sites. This report presents the results obtained from operation of the integrated pilot-scale MSO treatment system through …
Date: November 1, 1998
Creator: Adamson, M G; Hipple, D L; Hopper, R W & Hsu, P C
System: The UNT Digital Library
Oxidative alkaline dissolution of chromium from Hanford tank sludges: Results of FY 98 studies (open access)

Oxidative alkaline dissolution of chromium from Hanford tank sludges: Results of FY 98 studies

Plans for disposing of the high-level radioactive wastes at the Hanford Site call for retrieving, pretreating, and finally immobilizing the wastes in a glass matrix. Since the cost for vitrifying and disposing of high-level wastes will be very great, pretreatment processes are being developed to reduce their volume. The baseline method for pretreating Hanford tank sludges is caustic leaching. Earlier studies with Hanford tank-sludge simulants and with actual Hanford tank sludges have indicated that treating water-washed and caustic-leached solids with oxidants can significantly increase the removal of Cr. Permanganate and ozone have been shown to be generally the most rapid and effective chemical agents for this purpose. The work described in this report continues to examine the effectiveness of solubilizing additional Cr from Hanford tank wastes by oxidation of the water-insoluble solids from tanks U-108, U-109, and SX-108 under alkaline conditions. The current study confirms that permanganate is highly effective at removing chromium from water solids under alkaline conditions, with Cr removals of up to 99+%. Elemental oxygen can also be highly effective, with removals up to 97+%.
Date: August 1, 1998
Creator: Rapko, B.M.
System: The UNT Digital Library
Tanks Focus Area FY98 midyear technical review (open access)

Tanks Focus Area FY98 midyear technical review

The Tanks Focus Area (TFA) serves as the DOE`s Office of Environmental Management`s national technology and solution development program for radioactive waste tank remediation. Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. In total, 17 technologies and technical solutions were selected for review. The purpose of each review was to understand the state of development of each technology selected for review and to identify issues to be resolved before the technology or technical solution progressed to the next level of maturity. The reviewers provided detailed technical and programmatic recommendations and comments. The disposition of these recommendations and comments and their impact on the program is documented in this report.
Date: June 1, 1998
Creator: Schlahta, S. N. & Brouns, T. M.
System: The UNT Digital Library
TFA Tank Focus Area - multiyear program plan FY98-FY00 (open access)

TFA Tank Focus Area - multiyear program plan FY98-FY00

The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 80 tanks are known or assumed to have leaked. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE`s Office of Environmental Management`s (EM`s) national technology development program for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE`s technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE`s four major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), …
Date: September 1, 1997
Creator: unknown
System: The UNT Digital Library
Tanks focus area multiyear program plan FY97-FY99 (open access)

Tanks focus area multiyear program plan FY97-FY99

The U.S. Department of Energy (DOE) continues to face a major tank remediation problem with approximately 332 tanks storing over 378,000 ml of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Most of the tanks have significantly exceeded their life spans. Approximately 90 tanks across the DOE complex are known or assumed to have leaked. Some of the tank contents are potentially explosive. These tanks must be remediated and made safe. How- ever, regulatory drivers are more ambitious than baseline technologies and budgets will support. Therefore, the Tanks Focus Area (TFA) began operation in October 1994. The focus area manages, coordinates, and leverages technology development to provide integrated solutions to remediate problems that will accelerate safe and cost-effective cleanup and closure of DOE`s national tank system. The TFA is responsible for technology development to support DOE`s four major tank sites: Hanford Site (Washington), INEL (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: safety, characterization, retrieval, pretreatment, immobilization, and closure.
Date: August 1, 1996
Creator: unknown
System: The UNT Digital Library
Massachusetts Institute of Technology, Plasma Fusion Center FY97--FY98 work proposal (open access)

Massachusetts Institute of Technology, Plasma Fusion Center FY97--FY98 work proposal

Alcator C-Mod is the high-field, high-density divertor tokamak in the world fusion program. It is one of five divertor experiments capable of plasma currents exceeding one megamp. Because of its compact dimensions, Alcator C-Mod investigates an essential area in parameter space, which complements the world`s larger experiments, in establishing the tokamak physics database. Three key areas of investigation have been called out in which Alcator C-Mod has a vital role to play: (1) divertor research on C-Mod takes advantage of the advanced divertor shaping, the very high scrap-off-layer power density, unique abilities in impurity diagnosis, and the High-Z metal wall, to advance the physics understanding of this critical topic; (2) in transport studies, C-Mod is making critical tests of both empirical scalings and theoretically based interpretations of tokamak transport, at dimensional parameters that are unique but dimensionless parameters often comparable to those in much larger experiments; (3) in the area of Advanced Tokamak research, so important to concept optimization, the high-field design of the device also provides long pulse length, compared to resistive skin time, which provides an outstanding opportunity to investigate the extent to which enhanced confinement and stability can be sustained in steady-state, using active profile control. In …
Date: March 1, 1996
Creator: unknown
System: The UNT Digital Library
Superconductivity for electric systems program plan, FY 1996--FY 2000 (open access)

Superconductivity for electric systems program plan, FY 1996--FY 2000

This describes a comprehensive, integrated approach for the development of HTS (high-temperature superconductivity) technology for cost-effective use in electric power applications. This approach supports the program`s mission: to develop the technology that could lead to industrial commercialization of HTS electric power applications, such as fault-current limiters, motors, generators, transmission cables, superinductors, and superconducting energy storage. The vision is that, by 2010, the US power systems equipment industry will regain a major share of the global market by offering superconducting products that outperform the competition; and in US, the power grid will gain increased efficiency and stability by incorporating many kinds of HTS devices. After an overview and a discussion of the program plan (wires, systems technology, partnership initiative), this document discusses technology status, stakeholders, and the role of US DOE.
Date: March 1, 1996
Creator: unknown
System: The UNT Digital Library