Resource Type

A 1-Joule laser for a 16-fiber injection system (open access)

A 1-Joule laser for a 16-fiber injection system

A 1-J laser was designed to launch light down 16, multi-mode fibers (400-{micro}m-core dia.). A diffractive-optic splitter was designed in collaboration with Digital Optics Corporation (DOC), and was delivered by DOC. Using this splitter, the energy injected into each fiber varied <1%. The spatial profile out of each fiber was such that there were no ''hot spots,'' a flyer could successfully be launched and a PETN pellet could be initiated. Preliminary designs of the system were driven by system efficiency where a pristine TEM{sub 00} laser beam would be required. The laser is a master oscillator, power amplifier (MOPA) consisting of a 4-mm-dia. Nd:YLF rod in the stable, q-switched oscillator and a 9.5-mm-dia. Nd:YLF rod in the double-passed amplifier. Using a TEM{sub 00} oscillator beam resulted in excellent transmission efficiencies through the fibers at lower energies but proved to be quite unreliable at higher energies, causing premature fiber damage, flyer plate rupture, stimulated Raman scattering (SRS), and stimulated Brillouin scattering (SBS). Upon further investigation, it was found that both temporal and spatial beam formatting of the laser were required to successfully initiate the PETN. Results from the single-mode experiments, including fiber damage, SRS and SBS losses, will be presented. In …
Date: April 6, 2004
Creator: Honig, J.
System: The UNT Digital Library
2-D or not 2-D, that is the question: A Northern California test (open access)

2-D or not 2-D, that is the question: A Northern California test

Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance …
Date: June 6, 2005
Creator: Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R & Dreger, D
System: The UNT Digital Library
3-D Thermal Evaluations for a Fueled Experiment in the Advanced Test Reactor (open access)

3-D Thermal Evaluations for a Fueled Experiment in the Advanced Test Reactor

The DOE Advanced Fuel Cycle Initiative and Generation IV reactor programs are developing new fuel types for use in the current Light Water Reactors and future advanced reactor concepts. The Advanced Gas Reactor program is planning to test fuel to be used in the Next Generation Nuclear Plant (NGNP) nuclear reactor. Preliminary information for assessing performance of the fuel will be obtained from irradiations performed in the Advanced Test Reactor large ''B'' experimental facility. A test configuration has been identified for demonstrating fuel types typical of gas cooled reactors or fast reactors that may play a role in closing the fuel cycle or increasing efficiency via high temperature operation Plans are to have 6 capsules, each containing 12 compacts, for the test configuration. Each capsule will have its own temperature control system. Passing a helium-neon gas through the void regions between the fuel compacts and the graphite carrier and between the graphite carrier and the capsule wall will control temperature. This design with three compacts per axial level was evaluated for thermal performance to ascertain the temperature distributions in the capsule and test specimens with heating rates that encompass the range of initial heat generation rates.
Date: October 6, 2004
Creator: Ambrosek, Richard G.; Chang, Gray S. & Utterbeck, Debby J.
System: The UNT Digital Library
20% Partial Siberian Snake in the AGS. (open access)

20% Partial Siberian Snake in the AGS.

An 11.4% partial Siberian snake was used to successfully accelerate polarized proton through a strong intrinsic depolarizing spin resonance in the AGS. No noticeable depolarization was observed. This opens up the possibility of using a 20% to 30% partial Siberian snake in the AGS to overcome all weak and strong depolarizing spin resonances. Some design and operation issues of the new partial Siberian snake are discussed.
Date: November 6, 2002
Creator: Huang, H.; Bai, M.; Brown, K. A.; Glenn, W.; Luccio, A. U.; MacKay, W. W. et al.
System: The UNT Digital Library
100% foundry compatible packaging and full wafer release and die separation technique for surface micromachined devices (open access)

100% foundry compatible packaging and full wafer release and die separation technique for surface micromachined devices

A completely foundry compatible chip-scale package for surface micromachines has been successfully demonstrated. A pyrex (Corning 7740) glass cover is placed over the released surface micromachined die and anodically bonded to a planarized polysilicon bonding ring. Electrical feedthroughs for the surface micromachine pass underneath the polysilicon sealing ring. The package has been found to be hermetic with a leak rate of less than 5 x 10{sup {minus}8} atm cm{sup {minus}3}/s. This technology has applications in the areas of hermetic encapsulation and wafer level release and die separation.
Date: April 6, 2000
Creator: Oliver, Andrew D. & Matzke, Carolyn M.
System: The UNT Digital Library
The 13th International Symposium on Relations between Homogeneous and Heterogeneous Catalysis -- AnIntroduction (open access)

The 13th International Symposium on Relations between Homogeneous and Heterogeneous Catalysis -- AnIntroduction

Over forty years, there have been major efforts to aim at understanding the properties of surfaces, structure, composition, dynamics on the molecular level and at developing the surface science of heterogeneous and homogeneous catalysis. Since most catalysts (heterogeneous, enzyme and homogeneous) are nanoparticles, colloid synthesis methods were developed to produce monodispersed metal nanoparticles in the 1-10 nm range and controlled shapes to use them as new model catalyst systems in two-dimensional thin film form or deposited in mezoporous three-dimensional oxides. Studies of reaction selectivity in multipath reactions (hydrogenation of benzene, cyclohexene and crotonaldehyde) showed that reaction selectivity depends on both nanoparticle size and shape. The oxide-metal nanoparticle interface was found to be an important catalytic site because of the hot electron flow induced by exothermic reactions like carbon monoxide oxidation.
Date: February 6, 2008
Creator: Somorjai, Gabor A.
System: The UNT Digital Library
2001 Gordon Research Conference on Laser Diagnostics in Combustion. Final Progress Report (open access)

2001 Gordon Research Conference on Laser Diagnostics in Combustion. Final Progress Report

None
Date: July 6, 2001
Creator: unknown
System: The UNT Digital Library
2005 Molecular Energy Transfer Gordon Conference (open access)

2005 Molecular Energy Transfer Gordon Conference

This Report is on Molecular Energy Transfer of Gordon Conference
Date: November 6, 2005
Creator: Wodtke, Allec M.
System: The UNT Digital Library
2006 Photoions, Photoionization & Photodetachment held on January 29-February 3, 2006 (open access)

2006 Photoions, Photoionization & Photodetachment held on January 29-February 3, 2006

The 4th Gordon Conference on Photoions, Photoionization and Photodetachment will be held January 29-February 3, 2006 at the Santa Ynez Valley Marriott in Buellton, California. This meeting will continue to cover fundamentals and applications of photoionization and photodetachment, including valence and core-level phenomena and applications to reaction dynamics, ultrashort laser pulses and the study of exotic molecules and anions. Further information will be available soon at the Gordon Conference Website, and will be announced.
Date: September 6, 2006
Creator: Gray, Robert Continetti Nancy Ryan
System: The UNT Digital Library
2009 Photosynthesis to be held June 28 - July 3, 2009 (open access)

2009 Photosynthesis to be held June 28 - July 3, 2009

The capture of solar energy by photosynthesis has had a most profound influence on the development and sustenance of life on earth. It is the engine that has driven the proliferation of life and, as the source of both energy and oxygen, has had a major hand in shaping the forms that life has taken. Both ancient and present day photosynthetic carbon fixation is intimately tied to issues of immediate human concern, global energy and global warming. Decreasing our reliance on fossil fuels by tapping photosynthesis in a more direct way is an attractive goal for sustainable energy. Meeting this challenge means understanding photosynthetic energy conversion at a molecular level, a task requiring perspectives ranging through all disciplines of science. Researchers in photosynthesis have a strong history of working across conventional boundaries and engaging in multidisciplinary collaborations. The Gordon conference in photosynthesis has been a key focal point for the dissemination of new results and the establishment of powerful research collaborations. In this spirit the 2009 Gordon conference on biophysical aspects of photosynthesis will bring together top international researchers from diverse and complementary disciplines, all working towards understanding how photosynthesis converts light into the stable chemical energy that powers so …
Date: July 6, 2009
Creator: Bruce, Doug
System: The UNT Digital Library
2009 Plant Lipids: Structure, Metabolism & Function Gordon Research Conference - February 1- 6 ,2009 (open access)

2009 Plant Lipids: Structure, Metabolism & Function Gordon Research Conference - February 1- 6 ,2009

The Gordon Research Conference on 'Plant Lipids: Structure, Metabolism and Function' has been instituted to accelerate research productivity in the field of plant lipids. This conference will facilitate wide dissemination of research breakthroughs, support recruitment of young scientists to the field of plant lipid metabolism and encourage broad participation of the plant lipid community in guiding future directions for research in plant lipids. This conference will build upon the strengths of the successful, previous biannual meetings of the National Plant Lipid Cooperative (www.plantlipids.org) that began in 1993, but will reflect a broader scope of topics to include the biochemistry, cell biology, metabolic regulation, and signaling functions of plant acyl lipids. Most importantly, this conference also will serve as a physical focal point for the interaction of the plant lipid research community. Applications to attend this conference will be open to all researchers interested in plant lipids and will provide a venue for the presentation of the latest research results, networking opportunities for young scientists, and a forum for the development and exchange of useful lipid resources and new ideas. By bringing together senior- and junior-level scientists involved in plant lipid metabolism, a broad range of insights will be shared and …
Date: February 6, 2009
Creator: Chapman, Kent D.
System: The UNT Digital Library
2010 Defects in Semiconductors GRC (open access)

2010 Defects in Semiconductors GRC

Continuing its tradition of excellence, this Gordon Conference will focus on research at the forefront of the field of defects in semiconductors. The conference will have a strong emphasis on the control of defects during growth and processing, as well as an emphasis on the development of novel defect detection methods and first-principles defect theories. Electronic, magnetic, and optical properties of bulk, thin film, and nanoscale semiconductors will be discussed in detail. In contrast to many conferences, which tend to focus on specific semiconductors, this conference will deal with point and extended defects in a broad range of electronic materials. This approach has proved to be extremely fruitful for advancing fundamental understanding in emerging materials such as wide-band-gap semiconductors, oxides, sp{sup 2} carbon based-materials, and photovoltaic/solar cell materials, and in understanding important defect phenomena such as doping bottleneck in nanostructures and the diffusion of defects and impurities. The program consists of about twenty invited talks and a number of contributed poster sessions. The emphasis should be on work which has yet to be published. The large amount of discussion time provides an ideal forum for dealing with topics that are new and/or controversial.
Date: January 6, 2011
Creator: Zhang, Shengbai
System: The UNT Digital Library
2010 ELECTRODEPOSITION GORDON RESEARCH CONFERENCE, AUGUST 1-6, 2010 (open access)

2010 ELECTRODEPOSITION GORDON RESEARCH CONFERENCE, AUGUST 1-6, 2010

The 2010 Gordon Conference on Electrodeposition will present cutting-edge research on electrodeposition with emphasis on (i) advances in basic science, (ii) developments in next-generation technologies, and (iii) new and emerging areas. The Conference will feature a wide range of topics, from atomic scale processes, nucleation and growth, thin film deposition, and electrocrystallization, to applications of electrodeposition in devices including microelectronics, solar energy, and power sources. The Conference will bring together investigators from a wide range of scientific disciplines, including chemical engineering, materials science and engineering, physics, and chemistry. The Conference will feature invited speakers at the forefront of the field, and a late-breaking news session that will provide the opportunity for graduate students, post-docs, and junior faculty to participate. The collegial atmosphere of this Conference, with scientific talks and poster sessions, as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to discuss current issues and promotes cross-disciplinary collaborations in the various research areas represented. The Conference will be held at Colby-Sawyer College, located in the Mt. Kearsarge-Lake Sunapee Region of New Hampshire. The surrounding mountains, forests, and lakes provide a beautiful setting for this conference. The attendance is limited …
Date: August 6, 2010
Creator: Searson, Peter
System: The UNT Digital Library
2010 GRC VIBRATIONAL SPECTROSCOPY AUGUST 1 - AUGUST 6, 2010 (open access)

2010 GRC VIBRATIONAL SPECTROSCOPY AUGUST 1 - AUGUST 6, 2010

The Vibrational Spectroscopy conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and at interfaces. The conference explores the wide range of state-of-the-art techniques based on vibrational motion. These techniques span the fields of time-domain, high-resolution frequency-domain, spatially-resolved, nonlinear and multidimensional spectroscopies. The conference highlights the application of these techniques in chemistry, materials, biology, and medicine. The theory of molecular vibrational motion and its connection to spectroscopic signatures and chemical reaction dynamics is the third major theme of the meeting. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of molecular systems ranging from small polyatomic molecules to large biomolecules and nanomaterials.
Date: August 6, 2010
Creator: Pate, Brooks
System: The UNT Digital Library
2D radiation-magnetohydrodynamic simulations of SATURN imploding Z-pinches (open access)

2D radiation-magnetohydrodynamic simulations of SATURN imploding Z-pinches

Z-pinch implosions driven by the SATURN device at Sandia National Laboratory are modeled with a 2D radiation magnetohydrodynamic (MHD) code, showing strong growth of magneto-Rayleigh Taylor (MRT) instability. Modeling of the linear and nonlinear development of MRT modes predicts growth of bubble-spike structures that increase the time span of stagnation and the resulting x-ray pulse width. Radiation is important in the pinch dynamics keeping the sheath relatively cool during the run-in and releasing most of the stagnation energy. The calculations give x-ray pulse widths and magnitudes in reasonable agreement with experiments, but predict a radiating region that is too dense and radially localized at stagnation. We also consider peaked initial density profiles with constant imploding sheath velocity that should reduce MRT instability and improve performance. 2D krypton simulations show an output x-ray power > 80 TW for the peaked profile.
Date: November 6, 1995
Creator: Hammer, J. H.; Eddleman, J. L. & Springer, P. T.
System: The UNT Digital Library
2XIIB plasma confinement experiments (open access)

2XIIB plasma confinement experiments

This paper reports results of 2XIIB neutral-beam injection experiments with plasma-stream stabilization. The plasma stream is provided either by a pulsed plasma generator located on the field lines outside the plasma region or by ionization of neutral gas introduced at the mirror throat. In the latter case, the gas is ionized by the normal particle flux through the magnetic mirror. A method of plasma startup and sustenance in a steady-state magnetic field is reported in which the plasma stream from the pulsed plasma generator serves as the initial target for the neutral beams. After an energetic plasma of sufficient density is established, the plasma generator stream is replaced by the gas-fed stream. Lifetimes of the stabilized plasma increase with plasma temperature in agreement with the plasma stabilization of the drift-cyclotron loss-cone mode. The following plasma parameters are attained using the pulsed plasma generator for stabilization: n approximately 5 x 10/sup 13/ cm/sup -3/, anti W/sub i/ approximately 13 keV, T/sub e/ = 140 eV, and ntau/sub p/ approximately 7 x 10/sup 10/ cm/sup -3/.s. With the gas feed, the mean deuterium ion energy is 9 keV and the peak density n approximately 10/sup 14/ cm/sup -3/. In the latter case, …
Date: August 6, 1976
Creator: Coensgen, F. H.; Clauser, J. F. & Correll, D. L.
System: The UNT Digital Library
3rd ASM Conference on Cell-Cell Communication in Bacteria (open access)

3rd ASM Conference on Cell-Cell Communication in Bacteria

This report summarizes the final program and provides the abstracts presented at the fourth American Society of Microbiology-sponsored conference on Cell-cell Communication in Bacteria, held November 6-9, 2011 in Miami, Florida. Bacteria are the paradigm for unicellular life, yet they also exhibit elaborate coordinated behaviors that often defy unicellularity. Research over the past two decades has revealed that a wide range of microbes communicate by diverse mechanisms. In most cases these microbial conversations occur through the exchange of diffusible signals, although there are also clear examples of contact-dependent communication. Many microbes use these signaling mechanisms to monitor and respond to population density, a process often described as quorum sensing. Interbacterial communication is not, however restricted to quorum sensing mechanisms, and there is mounting evidence that signaling can function in a range of different capacities. Communication between microorganisms has profound impacts on host interactions, as pathogens and commensals often regulate factors critical for interaction with their hosts via signal production and perception. The CCCB-4 conference provided a unique forum for the discussion, dissemination and exchange of new information and ideas among researchers working within this rapidly developing, yet mature field. Sessions were arranged around topics such as: the diversity of signal …
Date: November 6, 2011
Creator: Nalker, Lisa K.
System: The UNT Digital Library
Ab initio study of low energy electron collisions with ethylene (open access)

Ab initio study of low energy electron collisions with ethylene

None
Date: October 6, 2003
Creator: Trevisan, C. S.; Orel, A. E. & Rescigno, T. N.
System: The UNT Digital Library
Ablation gas dynamics of low-Z materials illuminated by soft x-rays (open access)

Ablation gas dynamics of low-Z materials illuminated by soft x-rays

Though many of our results will have much greater generality, the main purpose of this paper is to provide a simple, accurate, physical theory of what happens when a Planckian spectrum of soft x-rays is incident on one side of the slab of initially cold, dense material, of small nuclear charge Z. Our approach will be to consider in some detail the idealized situation. A semi-infinite (x {le} 0) slab of initially cold (T < 300 K), dense ({rho} {approximately} 1 {minus} 10 g/cc), low-Z (Z < 5) material is suddenly subjected at time t = 0 and thereafter to radiation incoming from x = +{infinity} with a specific intensity in directions toward the slab that is Planckian, characterized by a black-body temperature, T{sub R} in the soft x-ray region.
Date: September 6, 1991
Creator: Hatchett, S.P.
System: The UNT Digital Library
Absolute Determination of Charge-Coupled Device Quantum Detection Efficiency Using Si K-Edge X-Ray Absorption Fine Structure (open access)

Absolute Determination of Charge-Coupled Device Quantum Detection Efficiency Using Si K-Edge X-Ray Absorption Fine Structure

We report a method to determine the quantum detection efficiency and the absorbing layers on a front-illuminated charge-coupled device (CCD). The CCD under study, as part of a crystal spectrometer, measures intense continuum x-ray emission from a picosecond laser-produced plasma and spectrally resolves the Si K-edge x-ray absorption fine structure features due to the electrode gate structure of the device. The CCD response across the Si K-edge shows a large discontinuity as well as a number of oscillations that are identified individually and uniquely from Si, SiO{sub 2}, and Si{sub 3}N{sub 4} layers. From the spectral analysis of the structure and K-edge discontinuity, the active layer thickness and the different absorbing layers thickness can be determined precisely. A precise CCD detection model from 0.2-10 keV can be deduced from this highly sensitive technique.
Date: May 6, 2012
Creator: Dunn, J. & Steel, A. B.
System: The UNT Digital Library
Absorption of Bound States in Hot, Dense Matter (open access)

Absorption of Bound States in Hot, Dense Matter

Preliminary experiments using a long pulse laser generated X-ray source to back-light a short pulse laser heated thin foil have been performed at the Laboratoire pour l'Utilisation des Lasers Intenses (LULI) at Ecole Polytechnique in France. In this experiment, a 2 J, 300 ps, 532 nm laser was used to create the X-ray back-lighter. The primary diagnostic was a von Hamos spectrograph coupled to a 500 fs X-ray streak camera (TREX-VHS) developed at LLNL. This diagnostic combines high collection efficiency ({approx} 10{sup -4} steradians) with fast temporal response ({approx} 500 fs), allowing resolution of extremely transient spectral variations. The TREX-VHS was used to determine the time history, intensity, and spectral content of the back-lighter. The second diagnostic, Fourier Domain Interferometry (FDI), provides information about the position of the critical density of the target and thus the expansion hydrodynamics, laying the ground work for the plasma characterization. The plasmas were determined to be moderately to strongly coupled, resulting in absorption measurements that provide insight into bound states under such conditions.
Date: March 6, 2001
Creator: Shepherd, R.; Audebert, P.; Chenais-Popovics, C.; Geindre, J. P.; Fajardo, M.; Iglesias, C. et al.
System: The UNT Digital Library
Accelerated Evolution of Conserved Noncoding Sequences in theHuman Genome (open access)

Accelerated Evolution of Conserved Noncoding Sequences in theHuman Genome

Genomic comparisons between human and distant, non-primatemammals are commonly used to identify cis-regulatory elements based onconstrained sequence evolution. However, these methods fail to detect"cryptic" functional elements, which are too weakly conserved amongmammals to distinguish from nonfunctional DNA. To address this problem,we explored the potential of deep intra-primate sequence comparisons. Wesequenced the orthologs of 558 kb of human genomic sequence, coveringmultiple loci involved in cholesterol homeostasis, in 6 nonhumanprimates. Our analysis identified 6 noncoding DNA elements displayingsignificant conservation among primates, but undetectable in more distantcomparisons. In vitro and in vivo tests revealed that at least three ofthese 6 elements have regulatory function. Notably, the mouse orthologsof these three functional human sequences had regulatory activity despitetheir lack of significant sequence conservation, indicating that they arecryptic ancestral cis-regulatory elements. These regulatory elementscould still be detected in a smaller set of three primate speciesincluding human, rhesus and marmoset. Since the human and rhesus genomesequences are already available, and the marmoset genome is activelybeing sequenced, the primate-specific conservation analysis describedhere can be applied in the near future on a whole-genome scale, tocomplement the annotation provided by more distant speciescomparisons.
Date: July 6, 2006
Creator: Prambhakar, Shyam; Noonan, James P.; Paabo, Svante & Rubin, EdwardM.
System: The UNT Digital Library
Acceleration of Radiance for Lighting Simulation by Using Parallel Computing with OpenCL (open access)

Acceleration of Radiance for Lighting Simulation by Using Parallel Computing with OpenCL

We report on the acceleration of annual daylighting simulations for fenestration systems in the Radiance ray-tracing program. The algorithm was optimized to reduce both the redundant data input/output operations and the floating-point operations. To further accelerate the simulation speed, the calculation for matrix multiplications was implemented using parallel computing on a graphics processing unit. We used OpenCL, which is a cross-platform parallel programming language. Numerical experiments show that the combination of the above measures can speed up the annual daylighting simulations 101.7 times or 28.6 times when the sky vector has 146 or 2306 elements, respectively.
Date: September 6, 2011
Creator: Zuo, Wangda; McNeil, Andrew; Wetter, Michael & Lee, Eleanor
System: The UNT Digital Library
Accelerator control data visualization with Google Map (open access)

Accelerator control data visualization with Google Map

N/A
Date: October 6, 2013
Creator: W., Fu & Nemesure, S.
System: The UNT Digital Library