26 Matching Results

Results open in a new window/tab.

Ab Initio and Density Functional Investigation of the Conformer Manifold of Melatonin and a Proposal for a Simple Dft-based Diagnostic for Nondynamical Correlation (open access)

Ab Initio and Density Functional Investigation of the Conformer Manifold of Melatonin and a Proposal for a Simple Dft-based Diagnostic for Nondynamical Correlation

In this work we address two problems in computational chemistry relevant to biomolecular modeling. In the first project, we consider the conformer space of melatonin as a a representative example of “real-life” flexible biomolecules. Geometries for all 52 unique conformers are optimized using spin-component scaled MP2, and then relative energies are obtained at the CCSD (T) level near the complete basis set limit. These are then used to validate a variety of DFT methods with and without empirical dispersion corrections, as well as some lower-level ab initio methods. Basis set convergence is found to be relatively slow due to internal C-H…O and C-H…N contacts. Absent dispersion corrections, many DFT functionals will transpose the two lowest conformers. Dispersion corrections resolve the problem for most functionals. Double hybrids yield particularly good performance, as does MP2.5. In the second project, we propose a simple DFT-based diagnostic for nondynamical correlation effects. Aλ= (1-TAE [ΧλC]/TAE[XC])/λ where TAE is the total atomization energy, XC the “pure” DFT exchange-correlation functional, and ΧλC the corresponding hybrid with 100λ% HF-type exchange. The diagnostic is a good predictor for sensitivity of energetics to the level of theory, unlike most of the wavefunction-based diagnostics. For GGA functionals, Aλ values approaching unity …
Date: August 2013
Creator: Fogueri, Uma
System: The UNT Digital Library
From Development of Semi-empirical Atomistic Potentials to Applications of Correlation Consistent Basis Sets (open access)

From Development of Semi-empirical Atomistic Potentials to Applications of Correlation Consistent Basis Sets

The development of the semi-empirical atomistic potential called the embedded atom method (EAM) has allowed for the efficient modeling of solid-state environments, at a lower computational cost than afforded by density functional theory (DFT). This offers the capability of EAM to model the energetics of solid-state phases of varying coordination, including defects, such as vacancies and self-interstitials. This dissertation highlights the development and application of two EAMs: a Ti potential constructed with the multi-state modified embedded atom method (MS-MEAM), and a Ni potential constructed with the fragment Hamiltonian (FH) method. Both potentials exhibit flexibility in the description of different solid-states phases and applications. This dissertation also outlines two applications of DFT. First, a study of structure and stability for solid-state forms of NixCy (in which x and y are integers) is investigated using plane-wave DFT. A ground state phase for Ni2C is elucidated and compared to known and hypothesized forms of NixCy. Also, a set of correlation consistent basis sets, previously constructed using the B3LYP and BLYP density functionals, are studied. They are compared to the well-known to the correlation consistent basis sets that were constructed with higher-level ab initio methodologies through computations of enthalpies of formation and combustion enthalpies. …
Date: May 2014
Creator: Gibson, Joshua S.
System: The UNT Digital Library