Month

Optimizing Non-pharmaceutical Interventions Using Multi-coaffiliation Networks (open access)

Optimizing Non-pharmaceutical Interventions Using Multi-coaffiliation Networks

Computational modeling is of fundamental significance in mapping possible disease spread, and designing strategies for its mitigation. Conventional contact networks implement the simulation of interactions as random occurrences, presenting public health bodies with a difficult trade off between a realistic model granularity and robust design of intervention strategies. Recently, researchers have been investigating the use of agent-based models (ABMs) to embrace the complexity of real world interactions. At the same time, theoretical approaches provide epidemiologists with general optimization models in which demographics are intrinsically simplified. The emerging study of affiliation networks and co-affiliation networks provide an alternative to such trade off. Co-affiliation networks maintain the realism innate to ABMs while reducing the complexity of contact networks into distinctively smaller k-partite graphs, were each partition represent a dimension of the social model. This dissertation studies the optimization of intervention strategies for infectious diseases, mainly distributed in school systems. First, concepts of synthetic populations and affiliation networks are extended to propose a modified algorithm for the synthetic reconstruction of populations. Second, the definition of multi-coaffiliation networks is presented as the main social model in which risk is quantified and evaluated, thereby obtaining vulnerability indications for each school in the system. Finally, maximization …
Date: May 2013
Creator: Loza, Olivia G.
System: The UNT Digital Library
Modeling the Impact and Intervention of a Sexually Transmitted Disease: Human Papilloma Virus (open access)

Modeling the Impact and Intervention of a Sexually Transmitted Disease: Human Papilloma Virus

Many human papilloma virus (HPV) types are sexually transmitted and HPV DNA types 16, 18, 31, and 45 account for more than 75% if all cervical dysplasia. Candidate vaccines are successfully completing US Federal Drug Agency (FDA) phase III testing and several drug companies are in licensing arbitration. Once this vaccine become available it is unlikely that 100% vaccination coverage will be probable; hence, the need for vaccination strategies that will have the greatest reduction on the endemic prevalence of HPV. This thesis introduces two discrete-time models for evaluating the effect of demographic-biased vaccination strategies: one model incorporates temporal demographics (i.e., age) in population compartments; the other non-temporal demographics (i.e., race, ethnicity). Also presented is an intuitive Web-based interface that was developed to allow the user to evaluate the effects on prevalence of a demographic-biased intervention by tailoring the model parameters to specific demographics and geographical region.
Date: May 2006
Creator: Corley, Courtney D.
System: The UNT Digital Library
Bayesian Probabilistic Reasoning Applied to Mathematical Epidemiology for Predictive Spatiotemporal Analysis of Infectious Diseases (open access)

Bayesian Probabilistic Reasoning Applied to Mathematical Epidemiology for Predictive Spatiotemporal Analysis of Infectious Diseases

Abstract Probabilistic reasoning under uncertainty suits well to analysis of disease dynamics. The stochastic nature of disease progression is modeled by applying the principles of Bayesian learning. Bayesian learning predicts the disease progression, including prevalence and incidence, for a geographic region and demographic composition. Public health resources, prioritized by the order of risk levels of the population, will efficiently minimize the disease spread and curtail the epidemic at the earliest. A Bayesian network representing the outbreak of influenza and pneumonia in a geographic region is ported to a newer region with different demographic composition. Upon analysis for the newer region, the corresponding prevalence of influenza and pneumonia among the different demographic subgroups is inferred for the newer region. Bayesian reasoning coupled with disease timeline is used to reverse engineer an influenza outbreak for a given geographic and demographic setting. The temporal flow of the epidemic among the different sections of the population is analyzed to identify the corresponding risk levels. In comparison to spread vaccination, prioritizing the limited vaccination resources to the higher risk groups results in relatively lower influenza prevalence. HIV incidence in Texas from 1989-2002 is analyzed using demographic based epidemic curves. Dynamic Bayesian networks are integrated with …
Date: May 2006
Creator: Abbas, Kaja Moinudeen
System: The UNT Digital Library