Degree Level

137,076 Matching Results

Results open in a new window/tab.

Empirical Study of Ne in H-Mode Pedestal in DIII-D (open access)

Empirical Study of Ne in H-Mode Pedestal in DIII-D

There is compelling empirical [1] and theoretical [2] evidence that the global confinement of H-mode discharges increases as the pedestal pressure or temperature increases. Therefore, confidence in the performance of future machines requires an ability to predict the pedestal conditions in those machines. At this time, both the theoretical and empirical understanding of transport in the pedestal are incomplete and are inadequate to predict pedestal conditions in present or future machines. Recent empirical results might be evidence of a fundamental relation between the electron temperature T{sub e} and electron density n{sub e} profiles in the pedestal. A data set from the ASDEX-Upgrade tokamak has shown that {eta}{sub e}, the ratio between the scale lengths of the n{sub e} and T{sub e} profiles, exhibits a value of about 2 throughout the pedestal, despite a large range of the actual density and temperature values [3]. Data from the DIII-D tokamak show that over a wide range of pedestal density, the width of the steep gradient region for the T{sub e} profile is about 1-2 times the corresponding width for the n{sub e} profile, where both widths are measured from the plasma edge [4]. Thus, the barrier in the density might form a …
Date: May 5, 2005
Creator: . Groebner, R. J.; Osborne, T. H.; Fenstermacher, M. E.; Leonard, A. W.; Mahdavi, M. A.; Snyder, P. B. et al.
System: The UNT Digital Library
Overview of Low-Level Waste Disposal Operations at the Nevada Test Site (open access)

Overview of Low-Level Waste Disposal Operations at the Nevada Test Site

The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future.
Date: February 1, 2007
Creator: /Navarro, DOE
System: The UNT Digital Library
The Changing Adventures of Mixed Low-Level Waste Disposal at the Nevada Test Site (open access)

The Changing Adventures of Mixed Low-Level Waste Disposal at the Nevada Test Site

After a 15-year hiatus, the United States Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO) began accepting DOE off-site generated mixed low-level radioactive waste (MLLW) for disposal at the Nevada Test Site (NTS) in December 2005. This action was predicated on the acceptance by the Nevada Division of Environmental Protection (NDEP) of a waste analysis plan (WAP). The NNSA/NSO agreed to limit mixed waste disposal to 20,000 cubic meters (approximately 706,000 cubic feet) and close the facility by December 2010 or sooner, if the volume limit is reached. The WAP and implementing procedures were developed based on Hanford’s system of verification to the extent possible so the two regional disposal sites could have similar processes. Since the NNSA/NSO does not have a breaching facility to allow the opening of boxes at the site, verification of the waste occurs by visual inspection at the generator/treatment facility or by Real-Time-Radiography (RTR) at the NTS. This system allows the NTS to effectively, efficiently, and compliantly accept MLLW for disposal. The WAP, NTS Waste Acceptance Criteria, and procedures have been revised based on learning experiences. These changes include: RTR expectations; visual inspection techniques; tamper-indicating device selection; void space requirements; and …
Date: February 1, 2007
Creator: /Navarro/NSTec, DOE
System: The UNT Digital Library
QUANTITATIVE ANALYSES OF THE SEVERITY OF ATTACK ON CREVICE CORROSION SURFACES (open access)

QUANTITATIVE ANALYSES OF THE SEVERITY OF ATTACK ON CREVICE CORROSION SURFACES

None
Date: December 19, 2005
Creator: /a, n
System: The UNT Digital Library
Scaled Experimental Modeling of VHTR Plenum Flows (open access)

Scaled Experimental Modeling of VHTR Plenum Flows

Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (“thermal striping”) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower …
Date: April 1, 2007
Creator: 15, ICONE
System: The UNT Digital Library
Reduction of pertechnetate by acetohydroxamic acid: Formation of [TcNO(AHA)2(H2O)]+ and implications for the UREX process. (open access)

Reduction of pertechnetate by acetohydroxamic acid: Formation of [TcNO(AHA)2(H2O)]+ and implications for the UREX process.

Reductive nitrosylation and complexation of ammonium pertechnetate by acetohydroxamic acid has been achieved in aqueous nitric and perchloric acid solutions. The kinetics of the reaction depend on the relative concentrations of the reaction components and are accelerated at higher temperatures. The reaction does not occur unless conditions are acidic. Analysis of the x-ray absorption fine structure spectroscopic data is consistent with a pseudo-octahedral geometry with the linear Tc-N-O bond typical of technetium nitrosyl compounds, and electron spin resonance spectroscopy is consistent with a the d{sup 5} Tc(II) nitrosyl complex. The nitrosyl source is generally AHA, but may be augmented by products of reaction with nitric acid. The resulting low-valency trans-aquonitrosyl(diacetohydroxamic)-technetium(II) complex (1) is highly soluble in water, extremely hydrophilic, and is not extracted by tri-n-butylphosphate in a dodecane diluent. Its extraction properties are not pH-dependent; titration studies indicate a single species from pH 4.5 down to -0.6 (calculated). This molecule is resistant to oxidation by H{sub 2}O{sub 2}, even at high pH, and can undergo substitution to form other technetium nitrosyl complexes. The formation of 1 may strongly impact the fate of technetium in the nuclear fuel cycle.
Date: February 26, 2008
Creator: 1Harry Reid Center for Environmental Studies, Nuclear Science and Technology Division, University of Nevada, Las Vegas, Las Vegas, NV, 89154-4006; Gong, Cynthia-May S; Poineau, Frederic; Lukens, Wayne W & Czerwinski, Kenneth R.
System: The UNT Digital Library
Optimization of the Configuration of Pixilated Detectors Based on the Sgabbib-Nyquist Theory for the X-ray Spectroscopy of Hot Tokamak Plasmas (open access)

Optimization of the Configuration of Pixilated Detectors Based on the Sgabbib-Nyquist Theory for the X-ray Spectroscopy of Hot Tokamak Plasmas

This paper describes an optimization of the detector configuration, based on the Shannon-Nyquist theory, for two major x-ray diagnostic systems on tokamaks and stellarators: x-ray imaging crystal spectrometers and x-ray pinhole cameras. Typically, the spectral data recorded with pixilated detectors are oversampled, meaning that the same spectral information could be obtained using fewer pixels. Using experimental data from Alcator C-Mod, we quantify the degree of oversampling and propose alternate uses for the redundant pixels for additional diagnostic applications.
Date: August 9, 2012
Creator: : E. Wang, P. Beiersdorfer, M. Bitter, L.F. Delgado-Apricio, K.W. Hill and N. Pablant
System: The UNT Digital Library
Focal Plane Metrology for the LSST Camera (open access)

Focal Plane Metrology for the LSST Camera

Meeting the science goals for the Large Synoptic Survey Telescope (LSST) translates into a demanding set of imaging performance requirements for the optical system over a wide (3.5{sup o}) field of view. In turn, meeting those imaging requirements necessitates maintaining precise control of the focal plane surface (10 {micro}m P-V) over the entire field of view (640 mm diameter) at the operating temperature (T {approx} -100 C) and over the operational elevation angle range. We briefly describe the hierarchical design approach for the LSST Camera focal plane and the baseline design for assembling the flat focal plane at room temperature. Preliminary results of gravity load and thermal distortion calculations are provided, and early metrological verification of candidate materials under cold thermal conditions are presented. A detailed, generalized method for stitching together sparse metrology data originating from differential, non-contact metrological data acquisition spanning multiple (non-continuous) sensor surfaces making up the focal plane, is described and demonstrated. Finally, we describe some in situ alignment verification alternatives, some of which may be integrated into the camera's focal plane.
Date: January 10, 2007
Creator: A Rasmussen, Andrew P.; Hale, Layton; Kim, Peter; Lee, Eric; Perl, Martin; Schindler, Rafe et al.
System: The UNT Digital Library
IN-VIVO DIAGNOSIS OF CHEMICALLY INDUCED MELANOMA IN AN ANIMAL MODEL USING UV-VISIBLE AND NIR ELASTIC SCATTERING SPECTROSCOPY: PRELIMINARY TESTING. (open access)

IN-VIVO DIAGNOSIS OF CHEMICALLY INDUCED MELANOMA IN AN ANIMAL MODEL USING UV-VISIBLE AND NIR ELASTIC SCATTERING SPECTROSCOPY: PRELIMINARY TESTING.

Elastic light scattering spectroscopy (ESS) has the potential to provide spectra that contain both morphological and chromophore information from tissue. We report on a preliminary study of this technique, with the hope of developing a method for diagnosis of highly-pigmented skin lesions, commonly associated with skin cancer. Four opossums were treated with dimethylbenz(a)anthracene to induce both malignant melanoma and benign pigmented lesions. Skin lesions were examined in vivo using both UV-visible and near infrared (NIR) ESS, with wavelength ranges of 330-900 nm and 900-1700 nm, respectively. Both portable systems used identical fiber-optic probe geometry throughout all of the measurements. The core diameters for illuminating and collecting fibers were 400 and 200 {micro}m, respectively, with center-to-center separation of 350 {micro}m. The probe was placed in optical contact with the tissue under investigation. Biopsies from lesions were analyzed by two standard histopathological procedures. Taking into account only the biopsied lesions, UV-visible ESS showed distinct spectral correlation for 11/13 lesions. The NIR-ESS correlated well with 12/13 lesions correctly. The results of these experiments showed that UV-visible and NIR-ESS have the potential to classify benign and malignant skin lesions, with encouraging agreement to that provided by standard histopathological examination. These initial results show potential …
Date: January 1, 2001
Creator: A'AMAR, C.; LEY, R. & AL, ET
System: The UNT Digital Library
Development of Advanced Wear and Corrosion Resistant Systems Through Laser Surface Alloying and Materials Processing (open access)

Development of Advanced Wear and Corrosion Resistant Systems Through Laser Surface Alloying and Materials Processing

The stability of tungsten carbide particles in iron-rich and nickel-rich liquid during the laser surface alloying (LSA) process was investigated. Kinetic calculations indicate a rapid dissolution of tungsten carbide particles in iron-rich liquid, as compared with the dissolution rate in nickel-rich liquid. Optical microscopy indicated a heterogeneous microstructure around the tungsten particles that is in agreement with concentration gradients predicted by kinetic calculation. The work demonstrates the applicability of computational thermodynamics and kinetic models for the LSA process.
Date: April 1, 2002
Creator: A, Babu S S Martukanitz R P Parks K D David S
System: The UNT Digital Library
Comparison of ICEPEL predictions with single elbow flexible piping system experiment (open access)

Comparison of ICEPEL predictions with single elbow flexible piping system experiment

The ICEPEL Code for coupled hydrodynamic-structural response analysis of piping systems is used to analyze an experiment on the response of flexible piping systems to internal pressure pulses. The piping system consisted of two flexible Nickel-200 pipes connected in series through a 90/sup 0/ thick-walled stainless steel elbow. A tailored pressure pulse generated by a calibrated pulse gun is stabilized in a long thick-walled stainless steel pipe leading to the flexible piping system which ended with a heavy blind flange. The analytical results of pressure and circumferential strain histories are discussed and compared against the experimental data obtained by Stanford Research Institute.
Date: January 1, 1978
Creator: A-Moneim, M.T. & Chang, Y.W.
System: The UNT Digital Library
Computer simulation of LMFBR piping systems. [Accident conditions] (open access)

Computer simulation of LMFBR piping systems. [Accident conditions]

Integrity of piping systems is one of the main concerns of the safety issues of Liquid Metal Fast Breeder Reactors (LMFBR). Hypothetical core disruptive accidents (HCDA) and water-sodium interaction are two examples of sources of high pressure pulses that endanger the integrity of the heat transport piping systems of LMFBRs. Although plastic wall deformation attenuates pressure peaks so that only pressures slightly higher than the pipe yield pressure propagate along the system, the interaction of these pulses with the different components of the system, such as elbows, valves, heat exchangers, etc.; and with one another produce a complex system of pressure pulses that cause more plastic deformation and perhaps damage to components. A generalized piping component and a tee branching model are described. An optional tube bundle and interior rigid wall simulation model makes such a generalized component model suited for modelling of valves, reducers, expansions, and heat exchangers. The generalized component and the tee branching junction models are combined with the pipe-elbow loop model so that a more general piping system can be analyzed both hydrodynamically and structurally under the effect of simultaneous pressure pulses.
Date: January 1, 1977
Creator: A-Moneim, M.T.; Chang, Y.W. & Fistedis, S.H.
System: The UNT Digital Library
Nuclear physics with a medium-energy Electron-Ion Collider (open access)

Nuclear physics with a medium-energy Electron-Ion Collider

A polarized ep/eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy {radical}s {approx} 20-70 GeV and a luminosity {approx}10{sup 34} cm{sup -2} s{sup -1} would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: (i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); (ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); (iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12 GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-energy stage of eRHIC.
Date: June 1, 2012
Creator: A. Accardi, V. Guzey, A. Prokudin, C. Weiss
System: The UNT Digital Library
Raising Photoemission Efficiency with Surface Acoustic Waves (open access)

Raising Photoemission Efficiency with Surface Acoustic Waves

We are developing a novel technique that may help increase the efficiency and reduce costs of photoelectron sources used at electron accelerators. The technique is based on the use of Surface Acoustic Waves (SAW) in piezoelectric materials, such as GaAs, that are commonly used as photocathodes. Piezoelectric fields produced by the traveling SAW spatially separate electrons and holes, reducing their probability of recombination, thereby enhancing the photoemission quantum efficiency of the photocathode. Additional advantages could be increased polarization provided by the enhanced mobility of charge carriers that can be controlled by the SAW and the ionization of optically-generated excitons resulting in the creation of additional electron-hole pairs. It is expected that these novel features will reduce the cost of accelerator operation. A theoretical model for photoemission in the presence of SAW has been developed, and experimental tests of the technique are underway.
Date: July 1, 2012
Creator: A. Afanasev, F. Hassani, C.E. Korman, V.G. Dudnikov, R.P. Johnson, M. Poelker, K.E.L. Surles-Law
System: The UNT Digital Library
Epicyclic Twin-helix Magnetic Structure for Parametric-resonance Ionization Cooling (open access)

Epicyclic Twin-helix Magnetic Structure for Parametric-resonance Ionization Cooling

Para­met­ric-res­o­nance Ion­iza­tion Cool­ing (PIC) is en­vi­sioned as the final 6D cool­ing stage of a high-lu­mi­nos­i­ty muon col­lid­er. Im­ple­ment­ing PIC im­pos­es strin­gent con­straints on the cool­ing chan­nel's mag­net­ic op­tics de­sign. This paper pre­sents a lin­ear op­tics so­lu­tion com­pat­i­ble with PIC. Our so­lu­tion con­sists of a su­per­po­si­tion of two op­po­site-he­lic­i­ty equal-pe­ri­od and equal-strength he­li­cal dipole har­mon­ics and a straight nor­mal quadrupole. We demon­strate that such a sys­tem can be ad­just­ed to meet all of the PIC lin­ear op­tics re­quire­ments while re­tain­ing large ac­cep­tance.
Date: May 1, 2010
Creator: A. Afanasev, R.P. Johnson, Y.S. Derbenev, V.S. Morozov
System: The UNT Digital Library
Quadratic electroweak corrections for polarized Moller scattering (open access)

Quadratic electroweak corrections for polarized Moller scattering

The paper discusses the two-loop (NNLO) electroweak radiative corrections to the parity violating electron-electron scattering asymmetry induced by squaring one-loop diagrams. The calculations are relevant for the ultra-precise 11 GeV MOLLER experiment planned at Jefferson Laboratory and experiments at high-energy future electron colliders. The imaginary parts of the amplitudes are taken into consideration consistently in both the infrared-finite and divergent terms. The size of the obtained partial correction is significant, which indicates a need for a complete study of the two-loop electroweak radiative corrections in order to meet the precision goals of future experiments.
Date: January 1, 2012
Creator: A. Aleksejevs, S. Barkanova, Y. Kolomensky, E. Kuraev, V. Zykunov
System: The UNT Digital Library
Production and Testing Experience with the SRF Cavities for the CEBAF 12 GeV Upgrade (open access)

Production and Testing Experience with the SRF Cavities for the CEBAF 12 GeV Upgrade

The CEBAF recirculating CW electron linear accelerator at Jefferson Lab is presently undergoing a major upgrade to 12 GeV. This project includes the fabrication, preparation, and testing of 80 new 7-cell SRF cavities, followed by their incorporation into ten new cryomodules for subsequent testing and installation. In order to maximize the cavity Q over the full operable dynamic range in CEBAF (as high as 25 MV/m), the decision was taken to apply a streamlined preparation process that includes a final light temperature-controlled electropolish of the rf surface over the vendor-provided bulk BCP etch. Cavity processing work began at JLab in September 2010 and will continue through December 2011. The excellent performance results are exceeding project requirements and indicate a fabrication and preparation process that is stable and well controlled. The cavity production and performance experience to date will be summarized and lessons learned reported to the community.
Date: September 1, 2011
Creator: A. Burrill, G.K. Davis, F. Marhauser, C.E. Reece, A.V. Reilly, M. Stirbet
System: The UNT Digital Library
Physical effects of infrared quark eigenmodes in LQCD (open access)

Physical effects of infrared quark eigenmodes in LQCD

A truncated determinant algorithm is used to study the physical effects of the quark eigenmodes associated with eigenvalues below 300 MeV. This initial study focuses on coarse lattices (with O(a{sup 2}) improved gauge action), light internal quark masses and large physical volumes. Four bellweather full QCD processes are discussed: topological charge distributions, the eta prime propagator, string breaking as observed in the static energy and the rho decay into two pions.
Date: October 7, 1999
Creator: A. Duncan, E. Eichten and H. Thacker
System: The UNT Digital Library
Unquenched Studies Using the Truncated Determinant Algorithm (open access)

Unquenched Studies Using the Truncated Determinant Algorithm

A truncated determinant algorithm is used to study the physical effects of the quark eigenmodes associated with eigenvalues below 420 MeV. This initial high statistics study focuses on coarse (6{sup 4}) lattices (with O(a{sup 2}) improved gauge action), light internal quark masses and large physical volumes. Three features of full QCD are examined: topological charge distributions, string breaking as observed in the static energy and the eta prime mass.
Date: November 29, 2001
Creator: A. Duncan, E. Eichten and H. Thacker
System: The UNT Digital Library
Fabrication of high-density cantilever arrays and through-wafer interconnects (open access)

Fabrication of high-density cantilever arrays and through-wafer interconnects

Processes to fabricate dense, dry released microstructures with electrical connections on the opposite side of the wafer are described. A 10 x 10 array of silicon and polysilicon cantilevers with high packing density (5 tips/mm<sup>2</sup>) and high uniformity (<10 µm length variation across the wafer) are demonstrated. The cantilever release process uses a deep SF<sub>6</sub>/C<sub>4</sub>F<sub>8</sub>, plasma etch followed by a HBr plasma etch to accurately release cantilevers. A process for fabricating electrical contacts through the backside of the wafer is also described. Electrodeposited resist, conformal CVD metal deposition and deep SF<sub>6</sub>/C<sub>4</sub>F<sub>8</sub> plasma etching are used to make 30 µm/side square vias each of which has a resistance of 50 m(omega).
Date: November 3, 1998
Creator: A. Harley, J.; Abdollahi-Alibeik, S.; Chow, E. M.; Kenney, T. W.; McCarthy, A. M.; McVittie, J. P. et al.
System: The UNT Digital Library
The Muon LINAC for the International Design Study of the Neutrino Factory (open access)

The Muon LINAC for the International Design Study of the Neutrino Factory

The first stage of muon acceleration in the Neutrino Factory utilises a superconducting linac to accelerate muons from 244 MeV to 900 MeV. The linac was split into three types of cryomodules with decreasing magnetic fields and increasing amounts of RF voltage but with the design of the superconducting solenoid and RF cavities being the same for all cryomodules. The current status of the muon linac for the International Design Study for the Neutrino Factory will be presented including a final lattice design of the linac and tracking simulations.
Date: September 1, 2011
Creator: A. Kurup, C. Bontoiu, Morteza Aslaninejad, J. Pozimski, A. Bogacz, V.S. Morozov, Y.R. Roblin, K.B. Beard
System: The UNT Digital Library
INTRINSIC RESIDUAL STRESSES IN METAL FILMS SYNTHESIZED BY ENERGETIC PARTICLE DEPOSITION (open access)

INTRINSIC RESIDUAL STRESSES IN METAL FILMS SYNTHESIZED BY ENERGETIC PARTICLE DEPOSITION

None
Date: September 15, 2000
Creator: A. MISRA, M. NASTASI
System: The UNT Digital Library
Results from an FPIX0 chip bump-bonded to an atlas pixel detector (open access)

Results from an FPIX0 chip bump-bonded to an atlas pixel detector

Results are presented of tests performed on the first pixel detector readout ASIC designed at Fermilab (FPIX0).
Date: October 1, 1998
Creator: A. Mekkaoui, D. Christian, S. Kwan, J Srage and R. Yarema
System: The UNT Digital Library
Pressure-induced Breaking of Equilibrium Flux Surfaces in the W7AS Stellarator (open access)

Pressure-induced Breaking of Equilibrium Flux Surfaces in the W7AS Stellarator

Calculations are presented for two shots in the W7AS stellarator which differ only in the magnitude of the current in the divertor control coil, but have very different values of experimentally attainable β (<β> ≈ 2.7% versus <β> ≈ 1.8%). Equilibrium calculations find that a region of chaotic magnetic field line trajectories fills approximately the outer 1/3 of the cross-section in each of these configurations. The field lines in the stochastic region are calculated to behave as if the flux surfaces are broken only locally near the outer midplane and are preserved elsewhere. The calculated magnetic field line diffusion coefficients in the stochastic regions for the two shots are consistent with the observed differences in the attainable β, and are also consistent with the differences in the reconstructed pressure profiles.
Date: April 24, 2007
Creator: A. Reiman, M.C. Zarnstorff, D. Monticello, A. Weller, J. Geiger, and the W7-AS Team
System: The UNT Digital Library