Two-Phase Pressure Losses Quarterly Progress Report: Eighth Quarter, November 12, 1963 - February 11, 1964 (open access)

Two-Phase Pressure Losses Quarterly Progress Report: Eighth Quarter, November 12, 1963 - February 11, 1964

Technical report describing that voids were measured in a ½-inch by 1-3/4-inch channel with the S-1 insert (B(0)/B(1) = 0.4, L(0) = 0.1 inch), at 2 inches ahead of the insert (position A), ½-inch past the insert (position B), 5 inches past (position C), and 12 inches past (position D). The conditions were: P – 1000 psia, G = 1.00 x 10(6) lb/h-ft(2), and x = 18.8 percent. Average void and void distribution at position A are the same as for flow in a straight channel. Void distribution at position B shows that the stagnation region downstream of the inserts contains a high fraction of voids. Average void and void distribution at positions C and d show that the two-phase mixture becomes strongly mixed (homogenized) as a result of passing through he contraction-expansion inserts. Distribution at position D approaches the distribution at position A; i.e., the straight channel distribution.
Date: March 1, 1964
Creator: Janssen, E. (Engineer) & Kervinen, J. A.
System: The UNT Digital Library
AEC Fuel Cycle Program Design and Fabrication of Special Assembly 9-L : Irradiation Performance Test of UO2-Cermet Fuel (open access)

AEC Fuel Cycle Program Design and Fabrication of Special Assembly 9-L : Irradiation Performance Test of UO2-Cermet Fuel

Technical report describing a UO2-Mo cermet fuel assembly fabricated for long-term irradiation performance testing in the Vallecitos Boiling water Reactor. The design and fabrication histories of this assembly are described and pre-irradiation data on each individual rod are presented. Molybdenum was added to improve the bulk thermal conductivity of the fuel, so that fuel temperatures would remain comparatively low during high-power level operation of the fuel element. The molybdenum was incorporated into the compacts either as fibers or as a thin coating on individual UO2 particles. Fuel pellets were produced from these materials by vacuum hot pressing. The distribution of the molybdenum in both types of cermet fuels appeared favorable to good heat transfer. The fibers were oriented predominantly in the radial planes of the pellet as a result of the uni-directional compaction during the hot-pressing operation. In the pellets made from the coated particles, a continuous network of molybdenum occurred as a result of the coating welding together during the hot-pressing operation. The test assembly contains eight fuel rods; three contain UO2-Mo cermet, three contain the cermet produced from the coated particles, and two are for reference and contain the conventional sintered UO2 pellet fuel. The nominal outside diameter …
Date: March 1964
Creator: Ogawa, S. Y.
System: The UNT Digital Library
Accurate Nuclear Fuel Burnup Analyses; Ninth Quarterly Progress Report, (December 1963 - February 1964) (open access)

Accurate Nuclear Fuel Burnup Analyses; Ninth Quarterly Progress Report, (December 1963 - February 1964)

The objective of the Accurate Nuclear Fuel Burnup Analyses program is to develop more accurate methods for burnup analysis for general use than the current method of analysis of Ca-137 or Sr-90. The program will require from three to five years of effort.
Date: March 1, 1964
Creator: Rider, B. F.; Peterson, J. P., Jr.; Ruiz, C. P. & Smith, F. R.
System: The UNT Digital Library