A Study of Mechanisms to Engineer Fine Scale Alpha Phase Precipitation in Beta Titanium Alloy, Beta 21S (open access)

A Study of Mechanisms to Engineer Fine Scale Alpha Phase Precipitation in Beta Titanium Alloy, Beta 21S

Metastable b-Ti alloys are titanium alloys with sufficient b stabilizer alloying additions such that it's possible to retain single b phase at room temperature. These alloys are of great advantage compared to a/b alloys since they are easily cold rolled, strip produced and can attain excellent mechanical properties upon age hardening. Beta 21S, a relatively new b titanium alloy in addition to these general advantages is known to possess excellent oxidation and corrosion resistance at elevated temperatures. A homogeneous distribution of fine sized a precipitates in the parent b matrix is known to provide good combination of strength, ductility and fracture toughness. The current work focuses on a study of different mechanisms to engineer homogeneously distributed fine sized a precipitates in the b matrix. The precipitation of metastable phases upon low temperature aging and their influence on a precipitation is studied in detail. The precipitation sequence on direct aging above the w solvus temperature is also assessed. The structural and compositional evolution of precipitate phase is determined using multiple characterization tools. The possibility of occurrence of other non-classical precipitation mechanisms that do not require heterogeneous nucleation sites are also analyzed. Lastly, the influence of interstitial element, oxygen on a precipitation …
Date: August 2013
Creator: Behera, Amit Kishan
System: The UNT Digital Library
Atomistic Studies of Point Defect Migration Rates in the Iron-Chromium System (open access)

Atomistic Studies of Point Defect Migration Rates in the Iron-Chromium System

Generation and migration of helium and other point defects under irradiation causes ferritic steels based on the Fe-Cr system to age and fail. This is motivation to study point defect migration and the He equation of state using atomistic simulations due to the steels' use in future reactors. A new potential for the Fe-Cr-He system developed by collaborators at the Lawrence Livermore National Laboratory was validated using published experimental data. The results for the He equation of state agree well with experimental data. The activation energies for the migration of He- and Fe-interstitials in varying compositions of Fe-Cr lattices agree well with prior work. This research did not find a strong correlation between lattice ordering and interstitial migration energy
Date: August 2010
Creator: Hetherly, Jeffery
System: The UNT Digital Library
Surface Modifications to Enhance the Wear Resistance and the Osseo-integration Properties of Biomedical Ti-alloy (open access)

Surface Modifications to Enhance the Wear Resistance and the Osseo-integration Properties of Biomedical Ti-alloy

The current study focuses on improving the wear resistance of femoral head component and enhancing the osseo-integration properties of femoral stem component of a hip implant made of a new generation low modulus alloy, Ti-35Nb-7Zr-5Ta or TNZT. Different techniques that were adopted to improve the wear resistance of low-modulus TNZT alloy included; (a) fabrication of graded TNZT-xB (x= 0, 1, 2 wt%) samples using LENS, (b) oxidation, and (c) LASER nitriding of TNZT. TNZT-1B and TNZT-O samples have shown improved wear resistance when tested against UHMWPE ball in SBF medium. A new class of bio-ceramic coatings based on calcium phosphate (CaP), was applied on the TNZT sample surface and was further laser processed with the objective of enhancing their osseo-integration properties. With optimized LASER parameters, TNZT-CaP samples have shown improved corrosion resistance, surface wettability and cellular response when compared to the base TNZT sample.
Date: August 2013
Creator: Kami, Pavani
System: The UNT Digital Library
Dislocation Dynamics Simulations of Plasticity in Cu Thin Films (open access)

Dislocation Dynamics Simulations of Plasticity in Cu Thin Films

Strong size effects in plastic deformation of thin films have been experimentally observed, indicating non-traditional deformation mechanisms. These observations require improved understanding of the behavior of dislocation in small size materials, as they are the primary plastic deformation carrier. Dislocation dynamics (DD) is a computational method that is capable of directly simulating the motion and interaction of dislocations in crystalline materials. This provides a convenient approach to study micro plasticity in thin films. While two-dimensional dislocation dynamics simulation in thin film proved that the size effect fits Hall-Petch equation very well, there are issues related to three-dimensional size effects. In this work, three-dimensional dislocation dynamics simulations are used to study model cooper thin film deformation. Grain boundary is modeled as impenetrable obstacle to dislocation motion in this work. Both tension and cyclic loadings are applied and a wide range of size and geometry of thin films are studied. The results not only compare well with experimentally observed size effects on thin film strength, but also provide many details on dislocation processes in thin films, which could greatly help formulate new mechanisms of dislocation-based plasticity.
Date: August 2013
Creator: Wu, Han
System: The UNT Digital Library
Laser Deposition, Heat-treatment, and Characterization of the Binary Ti-xmn System (open access)

Laser Deposition, Heat-treatment, and Characterization of the Binary Ti-xmn System

The present research seeks to characterization of an additively manufactured and heat-treated Ti-xMn gradient alloy, a binary system that has largely been unexplored. In order to rapidly assess this binary system, compositionally graded Ti-xMn (0<x<15 wt%) specimens were fabricated using the LENS (Laser Engineered Net Shaping) and were subsequently heat-treated and characterized using a wide range of techniques. Microstructural changes with respect to the change in thermal treatments, hardness and chemical composition were observed and will be presented. These include assessments of both continuous cooling, leading to observations of both equilibrium and metastable phases, including the titanium martensites, and to direct aging studies looking for composition regimes that produce highly refined alpha precipitates – a subject of great interest given recent understandings of non-classical nucleation and growth mechanisms. The samples were characterized using SEM, EDS, TEM, and XRD and the properties probed using a Vickers Microhardness tester.
Date: August 2013
Creator: Avasarala, Chandana
System: The UNT Digital Library
Additive Manufacturing of Metastable Beta Titanium Alloys (open access)

Additive Manufacturing of Metastable Beta Titanium Alloys

Additive manufacturing processes of many alloys are known to develop texture during the deposition process due to the rapid reheating and the directionality of the dissipation of heat. Titanium alloys and with respect to this study beta titanium alloys are especially susceptible to these effects. This work examines Ti-20wt%V and Ti-12wt%Mo deposited under normal additive manufacturing process parameters to examine the texture of these beta-stabilized alloys. Both microstructures contained columnar prior beta grains 1-2 mm in length beginning at the substrate with no visible equiaxed grains. This microstructure remained constant in the vanadium system throughout the build. The microstructure of the alloy containing molybdenum changed from a columnar to an equiaxed structure as the build height increased. Eighteen additional samples of the Ti-Mo system were created under different processing parameters to identify what role laser power and travel speed have on the microstructure. There appears to be a correlation in alpha lath size and power density. The two binary alloys were again deposited under the same conditions with the addition of 0.5wt% boron to investigate the effects an insoluble interstitial alloying element would have on the microstructure. The size of the prior beta grains in these two alloys were reduced …
Date: August 2017
Creator: Yannetta, Christopher James
System: The UNT Digital Library

Topics in micro electromechanical systems: MEMS engineering and alternative materials for MEMS fabrication.

Access: Use of this item is restricted to the UNT Community
This paper deals with various topics in micro electromechanical systems (MEMS) technology beginning with microactuation, MEMS processing, and MEMS design engineering. The fabrication and testing of three separate MEMS devices are described. The first two devices are a linear stepping motor and a continuous rotary motor, respectively; and were designed for the purpose of investigating the frictional and wear properties of silicon components. The third device is a bi-stable microrelay, in which electrical current conducts through a secondary circuit, via a novel probe-interconnect mechanism. The second half focuses on engineering a carbon nanotube / SU-8 photoepoxy nanocomposite for fabricating MEMS devices. A processing method for this material as well as the initial results of characterization, are discussed.
Date: August 2004
Creator: Chapla, Kevin
System: The UNT Digital Library

Development of a Novel Grease Resistant Functional Coatings for Paper-based Packaging and Assessment of Application by Flexographic Press

Access: Use of this item is restricted to the UNT Community
Recent commercial developments have created a need for alternative materials and methods for imparting oil/grease resistance to paper and/or paperboard used in packaging. The performance of a novel grease resistant functional coating comprised of polyvinyl alcohol (PVA), sodium tetraborate pentahydrate (borate) and acetonedicarboxylic acid (ACDA) and the application of said coating by means of flexographic press is presented herein. Application criteria is developed, testing procedures described, and performance assessment of the developed coating materials are made. SEM images along with contact angle data suggest that coating performance is probably attributable to decreased mean pore size in conjunction with a slightly increased surface contact angle facilitated by crosslinking of PVA molecules by both borate ions and ACDA.
Date: August 2004
Creator: Brown, Robert W.
System: The UNT Digital Library

Effect of Silyation on Organosilcate Glass Films

Access: Use of this item is restricted to the UNT Community
Photoresist stripping with oxygen plasma ashing destroys the functional groups in organosilicate glass films and induce moisture uptake, causing low-k dielectric degradation. In this study, hexamethyldisilazane (HMDS), triethylchlorosilane and tripropylchlorosilane are used to repair the damage to organosilicate glass by the O2 plasma ashing process. The optimization of the surface functionalization of the organosilicate glass by the silanes and the thermal stability of the functionalized surfaces are investigated. These experimental results show that HMDS is a promising technique to repair the damage to OSG during the photoresist removal processing and that the heat treatment of the functionalized surfaces causes degradation of the silanes deteriorating the hydrophobicity of the films.
Date: August 2004
Creator: Kadam, Poonam
System: The UNT Digital Library
Investigation of growth kinetics of self-assembling monolayers by means of contact angle, optical ellipsometry, angle-resolved XPS and IR spectroscopy. (open access)

Investigation of growth kinetics of self-assembling monolayers by means of contact angle, optical ellipsometry, angle-resolved XPS and IR spectroscopy.

Absorption of octadecanethiol and p-nitrobenzenethiol onto gold surfaces from ethanol solutions has been studied by means of contact angle, optical ellipsometry, angle-resolved XPS (ARXPS), and with grazing angle total reflection FTIR. Growth of the monolayers from dilute solutions has been monitored and Langmuir isotherm adsorption curves were fitted to experimental data. A saturated film is formed within approximately 5h after immersion in solutions of concentrations ranging from 0.0005mM to 0.01mM. We found, that the final density of monolayer depends on the concentration of the solution.
Date: August 2004
Creator: Jakubowicz, Agnieszka
System: The UNT Digital Library
Determination of Wear in Polymers Using Multiple Scratch Test. (open access)

Determination of Wear in Polymers Using Multiple Scratch Test.

Wear is an important phenomenon that occurs in all the polymer applications in one form or the other. However, important links between materials properties and wear remain illusive. Thus optimization of material properties requires proper understanding of polymer properties. Studies to date have typically lacked systematic approach to all polymers and wear test developed are specific to some polymer classes. In this thesis, different classes of polymers are selected and an attempt is made to use multiple scratch test to define wear and to create a universal test procedure that can be employed to most of the polymers. In each of the materials studied, the scratch penetration depth s reaches a constant value after certain number of scratches depending upon the polymer and its properties. Variations in test parameters like load and speed are also studied in detail to understand the behavior of polymers and under different conditions. Apart from polystyrene, all the other polymers studied under multiple scratch test reached asymptotes at different scratch numbers.
Date: August 2004
Creator: Damarla, Gowrisankar
System: The UNT Digital Library
Corrosion Protection of Aerospace Grade Magnesium Alloy Elektron 43™ for Use in Aircraft Cabin Interiors (open access)

Corrosion Protection of Aerospace Grade Magnesium Alloy Elektron 43™ for Use in Aircraft Cabin Interiors

Magnesium alloys exhibit desirable properties for use in transportation technology. In particular, the low density and high specific strength of these alloys is of interest to the aerospace community. However, the concerns of flammability and susceptibility to corrosion have limited the use of magnesium alloys within the aircraft cabin. This work studies a magnesium alloy containing rare earth elements designed to increase resistance to ignition while lowering rate of corrosion. The microstructure of the alloy was documented using scanning electron microscopy. Specimens underwent salt spray testing and the corrosion products were examined using energy dispersive spectroscopy.
Date: August 2013
Creator: Baillio, Sarah S.
System: The UNT Digital Library

Evaluation of hydrogen trapping in HfO2 high-κ dielectric thin films.

Access: Use of this item is restricted to the UNT Community
Hafnium based high-κ dielectrics are considered potential candidates to replace SiO2 or SiON as the gate dielectric in complementary metal oxide semiconductor (CMOS) devices. Hydrogen is one of the most significant elements in semiconductor technology because of its pervasiveness in various deposition and optimization processes of electronic structures. Therefore, it is important to understand the properties and behavior of hydrogen in semiconductors with the final aim of controlling and using hydrogen to improve electronic performance of electronic structures. Trap transformations under annealing treatments in hydrogen ambient normally involve passivation of traps at thermal SiO2/Si interfaces by hydrogen. High-κ dielectric films are believed to exhibit significantly higher charge trapping affinity than SiO2. In this thesis, study of hydrogen trapping in alternate gate dielectric candidates such as HfO2 during annealing in hydrogen ambient is presented. Rutherford backscattering spectroscopy (RBS), elastic recoil detection analysis (ERDA) and nuclear reaction analysis (NRA) were used to characterize these thin dielectric materials. It was demonstrated that hydrogen trapping in bulk HfO2 is significantly reduced for pre-oxidized HfO2 prior to forming gas anneals. This strong dependence on oxygen pre-processing is believed to be due to oxygen vacancies/deficiencies and hydrogen-carbon impurity complexes that originate from organic precursors used in …
Date: August 2006
Creator: Ukirde, Vaishali
System: The UNT Digital Library

Investigation of Room Temperature Sputtering and Laser Annealing of Chalcogen Rich TMDs for Opto-Electronics

Chalcogen-rich transition-metal dichalcogenide (TMD) magnetron sputtering targets were custom manufactured via ball milling and sintering in the interest of depositing p-type chalcogen-rich films. Room temperature radio frequency (RF) magnetron sputtering produced ultra-thin amorphous precursor of WSx and MoSx (where x is between 2-3) on several different substrates. The influence of working pressure on the MoS3 content of the amorphous films was explored with X-ray photoelectron spectroscopy (XPS), while the physical and chemical effects of sputtering were investigated for the WSx target itself. The amorphous precursor films with higher chalcogenide content were chosen for laser annealing, and their subsequent laser annealing induced phase transformations were investigated for the synthesis of polycrystalline 2H-phase semiconducting thin films. The role of laser fluence and the number of laser pulses during annealing on phase transformation and film mobility was determined from Raman spectroscopy and Hall effect measurement, respectively. Hall effect measurements were used to identify carrier type and track mobility between amorphous precursors and crystalline films. The p-type 2H-TMD films demonstrates the ability to produce a scalable processing criterion for quality ultra-thin TMD films on various substrates and in a method which is also compatible for flexible, stretchable, transparent, and bendable substrates.
Date: August 2022
Creator: Gellerup, Branden Spencer
System: The UNT Digital Library

Scuffing and Wear Prevention in Low Viscosity Hydrocarbon Fuels

To design high pressure fuel system components that resist wear and scuffing failure when operated in low viscosity fuels, a comprehensive study on the tribological performance of various existing coating materials is necessary. This thesis aims to provide the relative performance of a variety of coating materials across different fuel environments by testing them in conditions that model those experienced in fuel pumps. The relative performance of these coatings are then indexed across a variety of material properties, including hardness, elastic modulus, wettability, and the interaction between the surface and the various types of fuel molecules.
Date: August 2022
Creator: Dockins, Maddox Wade
System: The UNT Digital Library
Ternary Oxide Structures for High Temperature Lubrication (open access)

Ternary Oxide Structures for High Temperature Lubrication

In this research, a temperature dependent tribological investigation of selected ternary oxides was undertaken. Based on the promising results of previous studies on silver based ternary oxides, copper based ternary oxides were selected to conduct a comparative study since both copper and silver are located in the same group in the periodic table of the elements. Two methods were used to create ternary oxides: (i) solid chemical synthesis to create powders and (ii) sputtering to produce thin films. X-ray diffraction was used to explore the evolution of phases, chemical properties, and structural properties of the coatings before and after tribotesting. Scanning electron microscopy, Auger scanning nanoprobe spectroscopy, and X-ray photoelectron spectroscopy were used to investigate the chemical and morphological properties of these materials after sliding tests. These techniques revealed that chameleon coatings of copper ternary oxides produce a friction coefficient of 0.23 when wear tested at 430 °C. The low friction is due to the formation of copper tantalate phase and copper in the coatings. All sputtering coatings showed similar tribological properties up to 430 °C.
Date: August 2015
Creator: Gu, Jingjing
System: The UNT Digital Library
Compostable Soy-Based Polyurethane Foam with Kenaf Core Modifiers (open access)

Compostable Soy-Based Polyurethane Foam with Kenaf Core Modifiers

Building waste and disposable packaging are a major component in today's landfills. Most of these are structural or thermally insulative polymer foams that do not degrade over a long period of time. Currently, there is a push to replace these foams with thermoplastic or biodegradable foams that can either be recycled or composted. We propose the use of compostable soy-based polyurethane foams (PU) with kenaf core modifiers that will offer the desired properties with the ability to choose responsible end-of-life decisions. The effect of fillers is a critical parameter in investigating the thermal and mechanical properties along with its effect on biodegradability. In this work, foams with 5%, 10%, and 15% kenaf core content were created. Two manufacturing approaches were used: the free foaming used by spray techniques and the constrained expansion complementary to a mold cavity. Structure-property relations were examined using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermal conductivity, compression values, scanning electron microscopy (SEM), x-ray micro-computed tomography (micro-CT), and automated multiunit composting system (AMCS). The results show that mechanical properties are reduced with the introduction of kenaf core reinforcement while thermal conductivity and biodegradability display a noticeable improvement. This shows that in application properties can be …
Date: August 2016
Creator: Hoyt, Zachary
System: The UNT Digital Library
Void Growth and Collapse in a Creeping Single Crystal (open access)

Void Growth and Collapse in a Creeping Single Crystal

Aircraft engine components can be subjected to a large number of thermo-mechanical loading cycles and to long dwell times at high temperatures. In particular, the understanding of creep in single crystal superalloy turbine blades is of importance for designing more reliable and fuel efficient aircraft engines. Creep tests on single crystal superalloy specimens have shown greater creep strain rates for thinner specimens than predicted by current theories. Therefore, it is necessary to develop a more predictive description of creep processes in these materials for them to be used effectively. Experimental observations have shown that the crystals have an initial porosity and that the progressive growth of these voids plays a major role in limiting creep life. In order to understand void growth under creep in single crystals, we have analyzed the creep response of three dimensional unit cells with a single spherical void under different types of isothermal creep loading. The growth behavior of the void is simulated using a three dimensional rate dependent crystal plasticity constitutive relation in a quasi-static finite element analysis. The aim of the present work is to analyze the effect of stress traixiality and Lode parameter on void growth under both constant true stress and …
Date: August 2011
Creator: Srivastava, Ankit
System: The UNT Digital Library
Modified epoxy coatings on mild steel: A study of tribology and surface energy. (open access)

Modified epoxy coatings on mild steel: A study of tribology and surface energy.

A commercial epoxy was modified by adding fluorinated poly (aryl ether ketone) and in turn metal micro powders (Ni, Al, Zn, and Ag) and coated on mild steel. Two curing agents were used; triethylenetetramine (curing temperatures: 30 oC and 70 oC) and hexamethylenediamine (curing temperature: 80 oC). Variation in tribological properties (dynamic friction and wear) and surface energies with varying metal powders and curing agents was evaluated. When cured at 30 oC, friction and wear decreased significantly due to phase separation reaction being favored but increased when cured at 70 oC and 80 oC due to cross linking reaction being favored. There was a significant decrease in surface energies with the addition of modifiers.
Date: August 2009
Creator: Dutta, Madhuri
System: The UNT Digital Library
Processing, Structure, and Tribological Property Interrelationships in Sputtered Nanocrystalline ZnO Coatings (open access)

Processing, Structure, and Tribological Property Interrelationships in Sputtered Nanocrystalline ZnO Coatings

Solid lubricant coatings with controlled microstructures are good candidates in providing lubricity in moving mechanical assembly applications, such as orthopedics and bearing steels. Nanocrystalline ZnO coatings with a layered wurtzite crystal structure have the potential to function as a lubricious material by its defective structure which is controlled by sputter deposition. The interrelationships between sputtered ZnO, its nanocrystalline structure and its lubricity will be discussed in this thesis. The nanocrystalline ZnO coatings were deposited on silicon substrates and Ti alloys by RF magnetron sputtering with different substrate adhesion layers, direct current biases, and temperatures. X-ray diffraction identified that the ZnO (0002) preferred orientation was necessary to achieve low sliding friction and wear along with substrate biasing. In addition, other analyses such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were utilized to study the solid lubrication mechanisms responsible for low friction and wear.
Date: August 2009
Creator: Tu, Wei-Lun
System: The UNT Digital Library

Processing-Structure-Property Relationships of Reactive Spark Plasma Sintered Boron Carbide-Titanium Diboride Composites

Access: Use of this item is restricted to the UNT Community
Sintering parameter effects on the microstructure of boron carbide and boron carbide/titanium diboride composites are investigated. The resulting microstructure and composition are characterized by scanning electron microscopy (SEM), x-ray microscopy (XRM) and x-ray diffraction (XRD). Starting powder size distribution effects on microstructure are present and effect the mechanical properties. Reactive spark plasma sintering introduces boron nitride (BN) intergranular films (IGF's) and their effects on fracture toughness, hardness and flexural strength are shown. Mechanical testing of Vickers hardness, 3-point bend and Chevron notch was done and the microstructural effects on the resulting mechanical properties are investigated.
Date: August 2019
Creator: Lide, Hunter
System: The UNT Digital Library

Charpy Impact Testing of Twinning Induced Plasticity and Transformation Induced Plasticity High Entropy Alloys

Access: Use of this item is restricted to the UNT Community
High entropy alloys (HEAs) are a new class of solid solution alloys that contain multiple principal elements and possess excellent mechanical properties, from corrosion resistance to fatigue and wear resistance. Even more recently, twinning induced plasticity (TWIP) and transformation induced plasticity (TRIP) non-equiatomic high entropy alloys have been engineered, promising increased strength and ductility as compared to their equiatomic counterparts. However, impact and fracture resistance of these HEAs has not been studied as much as their other mechanical properties. In this thesis, the hardness, tensile properties, and Charpy impact energy of Al0.3CoCrFeNi, a TWIP HEA, and 50Fe-30Mn-10Co-10Cr (at.%), a TRIP HEA, was explored. First, three processing conditions, (1) as-received, (2) recrystallized, and (3) peak hardness, were chosen for each alloy and verified with Vickers microhardness measurements. Next, the tensile properties of each alloy and condition were investigated. Charpy impact specimen size was then selected based on the final plate thickness, and the machined samples were tested. Plastic zone size and change in sample thickness in the deformed region of each condition after testing was measured. Post-impact test inspection of the samples in all conditions showed that the samples were in tension near the V-notch root and in compression at the …
Date: August 2019
Creator: Zellner, Samantha R
System: The UNT Digital Library
Scratch Modeling of Polymeric Materials with Molecular Dynamics (open access)

Scratch Modeling of Polymeric Materials with Molecular Dynamics

It is impossible to determine the amount of money that is spent every replacing products damaged from wear, but it is safe to assume that it is in the millions of dollars. With metallic materials, liquid lubricants are often used to prevent wear from materials rubbing against one another. However, with polymeric materials, liquid lubricants cause swelling, creating an increase in friction and therefore increasing the wear. Therefore, a different method or methods to mitigate wear in polymers should be developed. For better understanding of the phenomenon of wear, scratch resistance testing can be used. For this project, classic molecular dynamics is used to study the mechanics of nanometer scale scratching on amorphous polymeric materials. As a first approach, a model was created for polyethylene, considering intramolecular and intermolecular interactions as well as mass and volume of the CH2 monomers in a polymer chain. The obtained results include analysis of penetration depth and recovery percentage related to indenter force and size.
Date: August 2012
Creator: Hilbig, Travis
System: The UNT Digital Library
Molecular Dynamics Simulations of the Structures of Europium Containing Silicate and Cerium Containing Aluminophosphate Glasses (open access)

Molecular Dynamics Simulations of the Structures of Europium Containing Silicate and Cerium Containing Aluminophosphate Glasses

Rare earth ion doped glasses find applications in optical and photonic devices such as optical windows, laser, and optical amplifiers, and as model systems for immobilization of nuclear waste. Macroscopic properties of these materials, such as luminescence efficiency and phase stability, depend strongly on the atomic structure of these glasses. In this thesis, I have studied the atomic level structure of rare earth doped silicate and aluminophosphate glasses by using molecular dynamics simulations. Extensive comparisons with experimental diffraction and NMR data were made to validate the structure models. Insights on the local environments of rare earth ions and their clustering behaviors and their dependence on glass compositions have been obtained. In this thesis, MD simulations have been used to investigate the structure of Eu2O3-doped silica and sodium silicate glasses to understand the glass composition effect on the rare earth ions local environment and their clustering behaviors in the glass matrix, for compositions with low rare earth oxide concentration (~1mol%). It was found that Eu–O distances and coordination numbers were different in silica (2.19-2.22 Å and 4.6-4.8) from those in sodium silicate (2.32 Å and 5.8). High tendencies of Eu clustering and short Eu-Eu distances in the range 3.40-3.90 Å were …
Date: August 2012
Creator: Kokou, Leopold Lambert Yaovi
System: The UNT Digital Library