Sigma: Web Retrieval Interface for Nuclear Reaction Data (open access)

Sigma: Web Retrieval Interface for Nuclear Reaction Data

The authors present Sigma, a Web-rich application which provides user-friendly access in processing and plotting of the evaluated and experimental nuclear reaction data stored in the ENDF-6 and EXFOR formats. The main interface includes browsing using a periodic table and a directory tree, basic and advanced search capabilities, interactive plots of cross sections, angular distributions and spectra, comparisons between evaluated and experimental data, computations between different cross section sets. Interactive energy-angle, neutron cross section uncertainties plots and visualization of covariance matrices are under development. Sigma is publicly available at the National Nuclear Data Center website at www.nndc.bnl.gov/sigma.
Date: June 24, 2008
Creator: Pritychenko,B. & Sonzogni, A.A.
Object Type: Article
System: The UNT Digital Library
The impact of retail rate structures on the economics of commercial photovoltaic systems in California (open access)

The impact of retail rate structures on the economics of commercial photovoltaic systems in California

This article examines the impact of retail electricity rate design on the economic value of grid-connected photovoltaic (PV) systems, focusing on commercial customers in California. Using 15-min interval building load and PV production data from a sample of 24 actual commercial PV installations, we compare the value of the bill savings across 20 commercial-customer retail electricity rates currently offered in the state. Across all combinations of customers and rates, we find that the annual bill savings from PV, per kWh generated, ranges from $0.05 to $0.24/kWh. This sizable range in rate-reduction value reflects differences in rate structures, revenue requirements, the size of the PV system relative to building load, and customer load shape. The most significant rate design issue for the value of commercial PV is found to be the percentage of total utility bills recovered through demand charges, though a variety of other factors are also found to be of importance. The value of net metering is found to be substantial, but only when energy from commercial PV systems represents a sizable portion of annual customer load. Though the analysis presented here is specific to California, our general results demonstrate the fundamental importance of retail rate design for the …
Date: June 24, 2008
Creator: Mills, Andrew D.; Wiser, Ryan; Barbose, Galen & Golove, William
Object Type: Article
System: The UNT Digital Library
Can cross sections be accurately known for priori? (open access)

Can cross sections be accurately known for priori?

Distinct maxima and minima in the neutron total cross section uncertainties were observed in our large scale covariance calculations using a spherical optical potential. In this contribution we investigate the physical origin of this oscillating structure. Specifically, we analyze the case of neutron reactions on {sup 56}Fe, for which total cross section uncertainties are characterized by the presence of five distinct minima at 0.1, 1.1, 5, 25, and 70 MeV. To investigate their origin, we calculated total cross sections by perturbing the real volume depth V{sub v} by its expected uncertainty {+-}{Delta}V{sub v}. Inspecting the effect of this perturbation on the partial wave cross sections we found that the first minimum (at 0.1 MeV) is exclusively due to the contribution of the s-wave. On the other hand, the same analysis at 1.1 MeV showed that the minimum is the result of the interplay between s-, p-, and d-waves; namely the change in the s-wave happens to be counterbalanced by changes in the p- and d-waves. Similar considerations can be extended for the third minimum, although it can be also explained in terms of the Ramsauer effect as well as the other ones (at 25 and 70 MeV). We discuss the …
Date: June 24, 2008
Creator: Pigni, M. T.; Dietrich, F. S.; Herman, M. & Oblozinsky, P.
Object Type: Article
System: The UNT Digital Library
Neutron Cross Section Uncertainties in the Thermal and Resonance Regions (open access)

Neutron Cross Section Uncertainties in the Thermal and Resonance Regions

In the 'Atlas of Neutron Resonances', special care was expended to ensure that the resonance parameter information reproduces the various measured thermal cross sections, as well as the infinite dilute resonance integrals for Z = 1-100. In contrast, the uncertainties of the recommended quantities do not match those generated from the uncertainties of the resonance parameters. To address this problem, the present study was initiated to achieve consistency for 15 actinides and 21 structural and coolant moderator materials. This is realized by assigning uncertainties to the parameters of the negative-energy resonances and changing, if necessary, significantly the uncertainties of the low-lying positive-energy resonances. The influence of correlations between parameters on the derived uncertainties is examined and discussed.
Date: June 24, 2008
Creator: Mughabghab, S. F. & Oblozinsky, P.
Object Type: Article
System: The UNT Digital Library
The Progress on Low-Cost, High-Quality, High-Temperature Superconducting Tapes Deposited by the Combustion Chemical Vapor Deposition Process (open access)

The Progress on Low-Cost, High-Quality, High-Temperature Superconducting Tapes Deposited by the Combustion Chemical Vapor Deposition Process

The innovative Combustion Chemical Vapor Deposition (CCVD) process is a non-vacuum technique that is being investigated to enable next generation products in several application areas including high-temperature superconductors (HTS). In combination with the Rolling Assisted Biaxially Textured Substrate (RABiTS) technology, the CCVD process has significant promise to provide low-cost, high-quality lengths of YBCO coated conductor. Over 100 meter lengths of both Ni and Ni-W (3 at. Wt.%) substrates with a surface roughness of 12-18 nm were produced. The CCVD technology has been used to deposit both buffer layer coatings as well as YBCO superconducting layers. Buffer layer architecture of strontium titanate (SrTiO{sub 3}) and ceria (CeO{sub 2}) have been deposited by CCVD on textured nickel substrates and optimized to appropriate thicknesses and microstructures to provide templates for growing PLD YBCO with a J{sub c} of 1.1 MA/cm{sup 2} at 77 K and self-field. The CCVD buffer layers have been scaled to meter plus lengths with good epitaxial uniformity along the length. A short sample cut from one of the lengths enabled high critical current density PLD YBCO. Films of CCVD YBCO superconductors have been grown on single crystal substrates with critical current densities over 1 MA/cm{sup 2}. In addition, superconducting …
Date: June 24, 2008
Creator: Shoup, S. S.; White, M. K.; Krebs, S. L.; Darnell, N.; King, A. C.; Mattox, D. S. et al.
Object Type: Report
System: The UNT Digital Library
Development of covariance capabilities in EMPIRE code (open access)

Development of covariance capabilities in EMPIRE code

The nuclear reaction code EMPIRE has been extended to provide evaluation capabilities for neutron cross section covariances in the thermal, resolved resonance, unresolved resonance and fast neutron regions. The Atlas of Neutron Resonances by Mughabghab is used as a primary source of information on uncertainties at low energies. Care is taken to ensure consistency among the resonance parameter uncertainties and those for thermal cross sections. The resulting resonance parameter covariances are formatted in the ENDF-6 File 32. In the fast neutron range our methodology is based on model calculations with the code EMPIRE combined with experimental data through several available approaches. The model-based covariances can be obtained using deterministic (Kalman) or stochastic (Monte Carlo) propagation of model parameter uncertainties. We show that these two procedures yield comparable results. The Kalman filter and/or the generalized least square fitting procedures are employed to incorporate experimental information. We compare the two approaches analyzing results for the major reaction channels on {sup 89}Y. We also discuss a long-standing issue of unreasonably low uncertainties and link it to the rigidity of the model.
Date: June 24, 2008
Creator: Herman, M.; Pigni, M. T.; Oblozinsky, P.; Mughabghab, S. F.; Mattoon, C. M.; Capote, R. et al.
Object Type: Article
System: The UNT Digital Library
Modeling and Simulation of Fluid Mixing Laser Experiments and Supernova (open access)

Modeling and Simulation of Fluid Mixing Laser Experiments and Supernova

The three year plan for this project is to develop novel theories and advanced simulation methods leading to a systematic understanding of turbulent mixing. A primary focus is the comparison of simulation models (both Direct Numerical Simulation and subgrid averaged models) to experiments. The comprehension and reduction of experimental and simulation data are central goals of this proposal. We will model 2D and 3D perturbations of planar interfaces. We will compare these tests with models derived from averaged equations (our own and those of others). As a second focus, we will develop physics based subgrid simulation models of diffusion across an interface, with physical but no numerical mass diffusion. We will conduct analytic studies of mix, in support of these objectives. Advanced issues, including multiple layers and reshock, will be considered.
Date: June 24, 2008
Creator: Glimm, James
Object Type: Report
System: The UNT Digital Library
Estimated 55Mn and 90Zr cross section covariances in the fast neutron energy region (open access)

Estimated 55Mn and 90Zr cross section covariances in the fast neutron energy region

We completed estimates of neutron cross section covariances for {sup 55}Mn and {sup 90}Zr, from keV range to 25 MeV, considering the most important reaction channels, total, elastic, inelastic, capture, and (n,2n). The nuclear reaction model code EMPIRE was used to calculate sensitivity to model parameters by perturbation of parameters that define the optical model potential, nuclear level densities and strength of the pre-equilibrium emission. The sensitivity analysis was performed with the set of parameters which reproduces the ENDF/B-VII.0 cross sections. The experimental data were analyzed and both statistical and systematic uncertainties were extracted from almost 30 selected experiments. Then, the Bayesian code KALMAN was used to combine the sensitivity analysis and the experiments to obtain the evaluated covariance matrices.
Date: June 24, 2008
Creator: Pigni, M. T.; Herman, M. & Oblozinsky, P.
Object Type: Article
System: The UNT Digital Library
Determining Exchange Splitting in a Magnetic Semiconductor by Spin-Filter Tunneling (open access)

Determining Exchange Splitting in a Magnetic Semiconductor by Spin-Filter Tunneling

A large exchange splitting of the conduction band in ultrathin films of the ferromagnetic semiconductor EuO was determined quantitatively, by using EuO as a tunnel barrier and fitting the current-voltage characteristics and temperature dependence to tunneling theory. This exchange splitting leads to different tunnel barrier heights for spin-up and spin-down electrons, and is large enough to produce a near fully spin-polarized current. Moreover, the magnetic properties of these ultrathin films (<6 nm) show a reduction in Curie temperature with decreasing thickness, in agreement with theoretical calculation [R. Schiller et al., Phys. Rev. Lett. 86, 3847 (2001)].
Date: June 24, 2008
Creator: Santos, T. S.; Moodera, J. S.; Venkataraman, K.; Negusse, E.; Holroyd, J.; Dvorak, J. et al.
Object Type: Article
System: The UNT Digital Library
PERI - Auto-tuning Memory Intensive Kernels for Multicore (open access)

PERI - Auto-tuning Memory Intensive Kernels for Multicore

We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to Sparse Matrix Vector Multiplication (SpMV), the explicit heat equation PDE on a regular grid (Stencil), and a lattice Boltzmann application (LBMHD). We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Xeon Clovertown, AMD Opteron Barcelona, Sun Victoria Falls, and the Sony-Toshiba-IBM (STI) Cell. Rather than hand-tuning each kernel for each system, we develop a code generator for each kernel that allows us to identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned kernel applications often achieve a better than 4X improvement compared with the original code. Additionally, we analyze a Roofline performance model for each platform to reveal hardware bottlenecks and software challenges for future multicore systems and applications.
Date: June 24, 2008
Creator: Bailey, David H.; Williams, Samuel; Datta, Kaushik; Carter, Jonathan; Oliker, Leonid; Shalf, John et al.
Object Type: Article
System: The UNT Digital Library
Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada (open access)

Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada

Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types—volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and …
Date: June 24, 2008
Creator: Fenelon, Joseph M.; Laczniak, Randell J. & Halford, and Keith J.
Object Type: Report
System: The UNT Digital Library
Synthesis and photovoltaic application of coper (I) sulfide nanocrystals (open access)

Synthesis and photovoltaic application of coper (I) sulfide nanocrystals

We present the rational synthesis of colloidal copper(I) sulfide nanocrystals and demonstrate their application as an active light absorbing component in combination with CdS nanorods to make a solution-processed solar cell with 1.6percent power conversion efficiency on both conventional glass substrates and flexible plastic substrates with stability over a 4 month testing period.
Date: June 24, 2008
Creator: Wu, Yue; Wadia, Cyrus; Ma, Wanli; Sadtler, Bryce & Alivisatos, A. Paul
Object Type: Article
System: The UNT Digital Library
COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS (open access)

COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A …
Date: June 24, 2008
Creator: WEBER, CHARLES M.
Object Type: Report
System: The UNT Digital Library
Processing Neutron Cross Section Covariances using NJOY-99 and PUFF-IV (open access)

Processing Neutron Cross Section Covariances using NJOY-99 and PUFF-IV

With the growing demand for multigroup covariances, the National Nuclear Data Center (NNDC) has been experiencing an upsurge in its covariance data processing activities using the two US codes NJOY-99 (LANL) and PUFF-IV (ORNL). The code NJOY-99 was upgraded by incorporating the new module ERRORJ-2.3, while the NNDC served as the active user and provided feedback. The NNDC has been primarily processing neutron cross section covariances on its 64-bit Linux cluster in support of two DOE programs, the Global Nuclear Energy Partnership (GNEP) and the Nuclear Criticality Safety Program (NCSP). For GNEP, the NNDC used NJOY-99.259 to generate multigroup covariance matrices of {sup 56}Fe, {sup 23}Na, {sup 239}Pu, {sup 235}U and {sup 238}U from the JENDL-3.3 library using the 15-, 33-, and 230-energy group structures. These covariance matrices will be used to test a new collapsing algorithm which will subsequently be employed to calculate uncertainties on integral parameters in different fast neutron-based systems. For NCSP, we used PUFF-IV 1.0.4 to verify the processability of new evaluated covariance data of {sup 55}Mn, {sup 239}Pu, {sup 233}U, {sup 235}U and {sup 238}U generated by a collaboration of ORNL and LANL. For the data end-users at large, the NNDC has made available a …
Date: June 24, 2008
Creator: Arcilla, R.; Kahler, A. C.; Oblozinsky, P. & Herman, M.
Object Type: Article
System: The UNT Digital Library
Few group collapsing of covariance matrix data based on a conservation principle (open access)

Few group collapsing of covariance matrix data based on a conservation principle

A new algorithm for a rigorous collapsing of covariance data is proposed, derived, implemented, and tested. The method is based on a conservation principle that allows preserving at a broad energy group structure the uncertainty calculated in a fine group energy structure for a specific integral parameter, using as weights the associated sensitivity coefficients.
Date: June 24, 2008
Creator: Hiruta,H.; Palmiotti, G.; Salvatores, M.; Arcilla, Jr., R.; Oblozinsky, P. & McKnight, R.D.
Object Type: Article
System: The UNT Digital Library
The M3D-C1 Approach to Simulating 3D 2-fluid Magnetohydrodynamics in Magnetic Fusion Experiments (open access)

The M3D-C1 Approach to Simulating 3D 2-fluid Magnetohydrodynamics in Magnetic Fusion Experiments

A new approach for solving the 3D MHD equations in a strongly magnetized toroidal plasma is presented which uses high-order 2D finite elements with C1 continuity. The vector fields use a physics-based decomposition. An efficient implicit time advance separates the velocity and field advance. ITAPS (SCOREC) adaptivity software and TOPS solvers are used.
Date: June 24, 2008
Creator: S. C. Jardin, N. Ferraro, X. Luo, J. Chen, J. Breslau, K.E. Jansen, and M. S. Shephard
Object Type: Report
System: The UNT Digital Library
New Crystal-Growth Methods for Producing Lattice-Matched Substrates for High-Temperature Superconductors (open access)

New Crystal-Growth Methods for Producing Lattice-Matched Substrates for High-Temperature Superconductors

This effort addressed the technical problem of identifying and growing, on a commercial scale, suitable single-crystal substrates for the subsequent deposition of epitaxial thin films of high temperature semiconductors such as GaN/AlN. The lack of suitable lattice-matched substrate materials was one of the major problem areas in the development of semiconducting devices for use at elevated temperatures as well as practical opto-electronic devices based on Al- and GaN technology. Such lattice-matched substrates are necessary in order to reduce or eliminate high concentrations of defects and dislocations in GaN/AlN and related epitaxial thin films. This effort concentrated, in particular, on the growth of single crystals of ZnO for substrate applications and it built on previous ORNL experience in the chemical vapor transport growth of large single crystals of zinc oxide. This combined expertise in the substrate growth area was further complemented by the ability of G. Eres and his collaborators to deposit thin films of GaN on the subject substrates and the overall ORNL capability for characterizing the quality of such films. The research effort consisted of research on the growth of two candidate substrate materials in conjunction with concurrent research on the growth and characterization of GaN films, i.e. the …
Date: June 24, 2008
Creator: Boatner, L. A.
Object Type: Report
System: The UNT Digital Library