Texas Register, Volume 22, Number 36, Pages 4123-4278, May 13, 1997 (open access)

Texas Register, Volume 22, Number 36, Pages 4123-4278, May 13, 1997

A weekly publication, the Texas Register serves as the journal of state agency rulemaking for Texas. Information published in the Texas Register includes proposed, adopted, withdrawn and emergency rule actions, notices of state agency review of agency rules, governor's appointments, attorney general opinions, and miscellaneous documents such as requests for proposals. After adoption, these rulemaking actions are codified into the Texas Administrative Code.
Date: May 13, 1997
Creator: Texas. Secretary of State.
Object Type: Journal/Magazine/Newsletter
System: The Portal to Texas History
Definition and means of maintaining the criticality detectors and alarms portion of the PFP safety envelope (open access)

Definition and means of maintaining the criticality detectors and alarms portion of the PFP safety envelope

The purpose of this document is to provide the definition and means of maintaining the Safety Envelope (SE) related to the Criticality Alarm System (CAS). This document provides amplification of the Limiting Condition for Operation (LCO) described in the Plutonium Finishing Plant (PFP) Operational Safety Requirements (OSR), WHC-SD-CP-OSR-010, Rev. 0, 1994, Section 3.1.2, Criticality Detectors and Alarms. This document, with its appendices, provides the following: (1) System functional requirements for determining system operability (Section 3); (2) A list of annotated system block diagrams which indicate the safety envelope boundaries (Appendix C); (3) A list of the Safety Class 1 and 2 Safety Envelope (SC-1/2 SE) equipment for input into the Master Component Index (Appendix B); (4) Functional requirements for individual SC-1/2 SE components, including appropriate setpoints and process parameters (Section 6 and Appendix A); (5) A list of the operational, maintenance and surveillance procedures necessary to operate and maintain the SC-1/2 SE components as required by the LCO (Section 6 and Appendix A).
Date: May 13, 1997
Creator: White, W. F.
Object Type: Report
System: The UNT Digital Library
Preparation of multilayered materials in cross-section for in situ TEM tensile deformation studies (open access)

Preparation of multilayered materials in cross-section for in situ TEM tensile deformation studies

The success of in-situ transmission electron microscopy experimentation is often dictated by proper specimen preparation. We report here a novel technique permitting the production of cross-sectioned tensile specimens of multilayered films for in-situ deformation studies. Of primary importance in the development of this technique is the production of an electron transparent micro-gauge section using focused ion beam technology. This microgauge section predetermines the position at which plastic deformation is initiated; crack nucleation, growth and failure are then subsequently observed.
Date: May 13, 1997
Creator: Wall, M. A.
Object Type: Article
System: The UNT Digital Library
Density of topological defects after a quench (open access)

Density of topological defects after a quench

We present results of numerical studies of the Landau-Ginzburg dynamics of the order parameter in one-dimensional models inspired by the condensed matter analogues of cosmological phase transitions. The main goal of our work is to show that, as proposed by one of us, the density of the frozen-out topological defects is set by the competition between the quench rate - the rate at which the phase transition is taking place - and the relaxation rate of the order parameter. In other words, the characteristic domain size, which determines the typical separation of topological defects in the new broken symmetry phase, is of the order of the correlation length at the instant at which the relaxation timescale of the order parameter equals the time remaining to the phase transition. In estimating the size of topological domains, this scenario shares with the original Kibble mechanism the idea that topological defects will form along the boundaries of independently selected regions of the new broken symmetry vacuum. However, it derives the size of such domains from non-equilibrium aspects of the transition (quench rate), as opposed to Kibble`s original proposal in which their size was estimated from the Ginzburg temperature above which thermally activated symmetry …
Date: May 13, 1997
Creator: Laguna, P. & Zurek, W.H.
Object Type: Article
System: The UNT Digital Library
Pulverization Induced Charge: In-Line Dry Coal Cleaning (open access)

Pulverization Induced Charge: In-Line Dry Coal Cleaning

The technical feasibility of separating mineral matter and pyrite from coal as it is transported from pulverizers to boilers in pulverized coal combustion units will be examined. The charge imparted on coal during pulverization and transport to pulverized coal (PC) burners in a utility boiler will be quantified. In addition to field charge measurements, an existing computational model will be extended to numerically simulate charged particle motion in a turbulent gas through an electric field. Results from the field tests and numerical modeling will be employed in design and construction of a laboratory scale pulverizer/classifier. This laboratory unit will be used to quantify the magnitude and differential charge imparted on bituminous and subbituminous coals during pulverization and classification at temperatures and with gaseous constituents typical to utility PC units. An electrostatic separator, designed for in-line operation between pulverizers and PC boilers, will be used to clean prepulverized coals. Theoretical and experimental data are to be used in preparing a preliminary design for a full-scale, (15 ton/hr) in-line, electrostatic coal cleaning device. Finally, the economic potential for application to PC units will be assessed.
Date: May 13, 1997
Creator: Schaefer, John L.; Stencel, John M. & Ban, Heng
Object Type: Report
System: The UNT Digital Library