Meeting Summary Advanced Light Water Reactor Fuels Industry Meeting Washington DC October 27 - 28, 2011 (open access)

Meeting Summary Advanced Light Water Reactor Fuels Industry Meeting Washington DC October 27 - 28, 2011

The Advanced LWR Fuel Working Group first met in November of 2010 with the objective of looking 20 years ahead to the role that advanced fuels could play in improving light water reactor technology, such as waste reduction and economics. When the group met again in March 2011, the Fukushima incident was still unfolding. After the March meeting, the focus of the program changed to determining what we could do in the near term to improve fuel accident tolerance. Any discussion of fuels with enhanced accident tolerance will likely need to consider an advanced light water reactor with enhanced accident tolerance, along with the fuel. The Advanced LWR Fuel Working Group met in Washington D.C. on October 72-18, 2011 to continue discussions on this important topic.
Date: November 1, 2011
Creator: unknown
System: The UNT Digital Library
Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model (open access)

Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model

Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied our model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.
Date: November 11, 2011
Creator: Rossi, R.; Gallagher, B.; Neville, J. & Henderson, K.
System: The UNT Digital Library
Energy and water in the Great Lakes. (open access)

Energy and water in the Great Lakes.

The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the …
Date: November 1, 2011
Creator: Tidwell, Vincent Carroll
System: The UNT Digital Library
The Role of Eddy-Tansport in the Thermohaline Circulation (open access)

The Role of Eddy-Tansport in the Thermohaline Circulation

Several research themes were developed during the course of this project. (1) Low-frequency oceanic varibility; (2) The role of eddies in the Antarctic Circumpolar Current (ACC) region; (3) Deep stratification and the overturning circulation. The key findings were as follows: (1) The stratification below the main thermocline (at about 500m) is determined in the circumpolar region and then communicated to the enclosed portions of the oceans through the overturning circulation. (2) An Atlantic pole-to-pole overturning circulation can be maintained with very small interior mixing as long as surface buoyancy values are shared between the northern North Atlantic and the ACC region.
Date: November 17, 2011
Creator: Cessi, Dr. Paola
System: The UNT Digital Library
Section on Supernova Remnants and Cosmic Rays of the White Paper on the Status and Future of Ground-Based Gamma-Ray Astronomy (open access)

Section on Supernova Remnants and Cosmic Rays of the White Paper on the Status and Future of Ground-Based Gamma-Ray Astronomy

This is a report on the findings of the SNR/cosmic-ray working group for the white paper on the status and future of ground-based gamma-ray astronomy. The white paper is an APS commissioned document, and the overall version has also been released and can be found on astro-ph. This detailed section of the white paper discusses the status of past and current attempts to observe shell-type supernova remnants and diffuse emission from cosmic rays at GeV-TeV energies. We concentrate on the potential of future ground-based gamma-ray experiments to study the acceleration of relativistic charged particles which is one of the main unsolved, yet fundamental, problems in modern astrophysics. The acceleration of particles relies on interactions between energetic particles and magnetic turbulence. In the case of SNRs we can perform spatially resolved studies in systems with known geometry, and the plasma physics deduced from these observations will help us to understand other systems where rapid particle acceleration is believed to occur and where observations as detailed as those of SNRs are not possible.
Date: November 9, 2011
Creator: Pohl, M.; U., /Iowa State; Abdo, Aous A.; U., /Michigan State; Atoyan, A.; U., /McGill et al.
System: The UNT Digital Library
Real-Time Dynamic Brake Assessment Proof of Concept Final Report (open access)

Real-Time Dynamic Brake Assessment Proof of Concept Final Report

This proof-of-concept research was performed to explore the feasibility of using real-world braking data from commercial motor vehicles to make a diagnosis of brake condition similar to that of the performance-based brake tester (PBBT). This was done by determining the relationship between pressure and brake force (P-BF), compensating for the gross vehicle weight (GVW). The nature of this P-BF relationship (e.g., low braking force for a given brake application pressure) may indicate brake system problems. In order to determine the relationship between brake force and brake application pressure, a few key parameters of duty cycle information were collected. Because braking events are often brief, spanning only a few seconds, a sample rate of 10 Hz was needed. The algorithm under development required brake application pressure and speed (from which deceleration was calculated). Accurate weight estimation was also needed to properly derive the braking force from the deceleration. In order to ensure that braking force was the predominant factor in deceleration for the segments of data used in analysis, the data was screened for grade as well. Also, the analysis needed to be based on pressures above the crack pressure. The crack pressure is the pressure below which the individual brakes …
Date: November 1, 2011
Creator: Lascurain, Mary Beth; Franzese, Oscar & Capps, Gary J
System: The UNT Digital Library
Assessment of Geochemical Environment for the Proposed INL Remote-Handled Low-Level Waste Disposal Facility (open access)

Assessment of Geochemical Environment for the Proposed INL Remote-Handled Low-Level Waste Disposal Facility

Conservative sorption parameters have been estimated for the proposed Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility. This analysis considers the influence of soils, concrete, and steel components on water chemistry and the influence of water chemistry on the relative partitioning of radionuclides over the life of the facility. A set of estimated conservative distribution coefficients for the primary media encountered by transported radionuclides has been recommended. These media include the vault system, concrete-sand-gravel mix, alluvium, and sedimentary interbeds. This analysis was prepared to support the performance assessment required by U.S. Department of Energy Order 435.1, 'Radioactive Waste Management.' The estimated distribution coefficients are provided to support release and transport calculations of radionuclides from the waste form through the vadose zone. A range of sorption parameters are provided for each key transport media, with recommended values being conservative. The range of uncertainty has been bounded through an assessment of most-likely-minimum and most-likely-maximum distribution coefficient values. The range allows for adequate assessment of mean facility performance while providing the basis for uncertainty analysis.
Date: November 1, 2011
Creator: Cooper, D. Craig
System: The UNT Digital Library
Wireless Sensing, Monitoring and Optimization for Campus-Wide Steam Distribution (open access)

Wireless Sensing, Monitoring and Optimization for Campus-Wide Steam Distribution

The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize energy delivery within the steam distribution system. Our approach leverages an integrated wireless sensor and real-time monitoring capability. We make real time state assessment on the steam trap health and steam flow estimate of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observing measurements of these sensors with state estimators for system health. Our assessments are based on a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps status. Experimental results show that the energy signature scheme has the potential to identify different steam trap states and it has sufficient sensitivity to estimate flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy …
Date: November 1, 2011
Creator: Olama, Mohammed M.; Allgood, Glenn O.; Kuruganti, Phani Teja; Sukumar, Sreenivas R.; Woodworth, Ken & Lake, Joe E.
System: The UNT Digital Library
ASSESSMENT OF THE ABILITY OF STANDARD SLURRY PUMPS TO MIX SOLIDS WITH LIQUIDS IN TANK 50H (open access)

ASSESSMENT OF THE ABILITY OF STANDARD SLURRY PUMPS TO MIX SOLIDS WITH LIQUIDS IN TANK 50H

Tank 50H is the feed tank for the Saltstone Production Facility (SPF). In the summer of 2011, Tank 50H contained two standard slurry pumps and two quad volute slurry pumps. Current requirements for mixing operation is to run three pumps for one hour prior to initiating a feed transfer to SPF. Savannah River Site (SRS) Liquid Waste moved both of the Quad Volute pumps from Tank 50H to Tank 51H to replace pumps in Tank 51H that were failing. In addition, one of the standard pumps in Tank 50H exhibits high seal leakage and vibration. SRS Liquid Waste requested Savannah River National Laboratory (SRNL) to conduct a study to evaluate the feasibility of mixing the contents of Tank 50H with one to three standard slurry pumps. To determine the pump requirements to mix solids with liquids in Tank 50H, the author reviewed the pilot-scale blending work performed for the Small Column Ion Exchange Process (SCIX), SRNL computational fluid dynamics (CFD) modeling, Tank 50H operating experience, and the technical literature, and applied the results to Tank 50H to determine the number, size, and operating parameters of pumps needed to mix the solid particles with the liquid in Tank 50H. The analysis …
Date: November 11, 2011
Creator: Poirier, M.
System: The UNT Digital Library
A study of algal biomass potential in selected Canadian regions. (open access)

A study of algal biomass potential in selected Canadian regions.

A dynamic assessment model has been developed for evaluating the potential algal biomass and extracted biocrude productivity and costs, using nutrient and water resources available from waste streams in four regions of Canada (western British Columbia, Alberta oil fields, southern Ontario, and Nova Scotia). The purpose of this model is to help identify optimal locations in Canada for algae cultivation and biofuel production. The model uses spatially referenced data across the four regions for nitrogen and phosphorous loads in municipal wastewaters, and CO{sub 2} in exhaust streams from a variety of large industrial sources. Other data inputs include land cover, and solar insolation. Model users can develop estimates of resource potential by manipulating model assumptions in a graphic user interface, and updated results are viewed in real time. Resource potential by location can be viewed in terms of biomass production potential, potential CO{sub 2} fixed, biocrude production potential, and area required. The cost of producing algal biomass can be estimated using an approximation of the distance to move CO{sub 2} and water to the desired land parcel and an estimation of capital and operating costs for a theoretical open pond facility. Preliminary results suggest that in most cases, the CO{sub …
Date: November 1, 2011
Creator: Passell, Howard David; Roach, Jesse Dillon & Klise, Geoffrey T.
System: The UNT Digital Library
Atom chip microscopy: A novel probe for strongly correlated materials (open access)

Atom chip microscopy: A novel probe for strongly correlated materials

Improved measurements of strongly correlated systems will enable the predicative design of the next generation of supermaterials. In this program, we are harnessing recent advances in the quantum manipulation of ultracold atomic gases to expand our ability to probe these technologically important materials in heretofore unexplored regions of temperature, resolution, and sensitivity parameter space. We are working to demonstrate the use of atom chips to enable single-shot, large area detection of magnetic flux at the 10^-7 flux quantum level and below. By harnessing the extreme sensitivity of atomic clocks and Bose-Einstein condensates (BECs) to external perturbations, the cryogenic atom chip technology developed here will provide a magnetic flux detection capability that surpasses other techniques---such as scanning SQUIDs---by a factor of 10--1000. We are testing the utility of this technique by using rubidium BECs to image the magnetic fields emanating from charge transport and magnetic domain percolation in strongly correlated materials as they undergo temperature-tuned metal--to--insulator phase transitions. Cryogenic atom chip microscopy introduces three very important features to the toolbox of high-resolution, strongly correlated material microscopy: simultaneous detection of magnetic and electric fields (down to the sub-single electron charge level); no invasive large magnetic fields or gradients; simultaneous micro- and macroscopic …
Date: November 3, 2011
Creator: Lev, Benjamin L
System: The UNT Digital Library
1994 SSRL Activity Report (open access)

1994 SSRL Activity Report

SSRL, a division of the Stanford Linear Accelerator Center, is a national user facility which provides synchrotron radiation, a name given to x-rays or light produced by electrons circulating in a storage ring at nearly the speed of light. The synchrotron radiation is produced by the 3.3 GeV storage ring, SPEAR. SPEAR is a fully dedicated synchrotron radiation facility which has been operating for user experiments 6 to 7 months per year. 1994, the third year of operation of SSRL as a fully dedicated, low-emittance, independent user facility was superb. The facility ran extremely well, delivering 89% of the scheduled user beam to 25 experimental stations during 6.5 months of user running. Over 600 users came from 167 institutions to participate in 343 experiments. Users from private industry were involved in 31% of these experiments. The SPEAR accelerator ran very well with no major component failures and an unscheduled down time of only 2.9%. In addition to this increased reliability, there was a significant improvement in the stability of the beam. The enhancements to the SPEAR orbit as part of a concerted three-year program were particularly noticeable to users. the standard deviation of beam movement (both planes) in the last …
Date: November 18, 2011
Creator: unknown
System: The UNT Digital Library
FY2011 Progress Report: Agreement 8697 - NOx Sensor Development (open access)

FY2011 Progress Report: Agreement 8697 - NOx Sensor Development

Objectives are: (1) Develop an inexpensive, rapid-response, high-sensitivity and selective electrochemical sensor for oxides of nitrogen (NO{sub x}) for compression-ignition, direct-injection (CIDI) OBD II systems; (2) Explore and characterize novel, effective sensing methodologies based on impedance measurements and designs and manufacturing methods that are compatible with mass fabrication; and (3) Collaborate with industry in order to (ultimately) transfer the technology to a supplier for commercialization. Approach used is: (1) Use an ionic (O{sup 2-}) conducting ceramic as a solid electrolyte and metal or metal-oxide electrodes; (2) Correlate NO{sub x} concentration with changes in cell impedance; (3) Evaluate sensing mechanisms and aging effects on long-term performance using electrochemical techniques; and (4) Collaborate with Ford Research Center to optimize sensor performance and perform dynamometer and on-vehicle testing. Work in FY2011 focused on using an algorithm developed in FY2010 in a simplified strategy to demonstrate how data from controlled laboratory evaluation could be applied to data from real-world engine testing. The performance of a Au wire prototype sensor was evaluated in the laboratory with controlled gas compositions and in dynamometer testing with diesel exhaust. The laboratory evaluation indicated a nonlinear dependence of the NO{sub x} and O{sub 2} sensitivity with concentration. For both …
Date: November 1, 2011
Creator: Woo, L. Y. & Glass, R. S.
System: The UNT Digital Library
Solid Collection Efforts: Ta Collimator Evaluation (open access)

Solid Collection Efforts: Ta Collimator Evaluation

Ta collimator sets that were part of the gated x-ray detector diagnostic (GXD) at NIF were analyzed for debris distribution and damage in 2011. These disks (ranging in thickness from 250 to 750 {mu}m) were fielded approximately 10 cm from target chamber center (TCC) on various symcap, THD and re-emit shots. The nose cone holder and forward Ta collimator (facing target chamber center, TCC) from all shots show evidence of surface melt. Non-destructive analysis techniques such as optical microscopy, surface profilometry, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray fluorescence (XRF) were used to determine debris composition and degree of deformation associated with each Ta disk. Molten debris from the stainless steel nose cone contaminated the surface of the collimators along with other debris associated with the target assembly (Al, Si, Cu, Au and In). Surface elemental analysis of the forward collimator Ta disks indicates that Au hohlraum debris is less concentrated on these samples versus those fielded 50 cm from TCC in the wedge range filter (WRF) assembly. It is possible that the Au is distributed below or within the stainless steel melt layer covering the disk, as most of the foreign debris is captured in the …
Date: November 21, 2011
Creator: Gostic, J M
System: The UNT Digital Library
SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE (open access)

SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. …
Date: November 16, 2011
Creator: Pareizs, J.; Click, D.; Lambert, D. & Reboul, S.
System: The UNT Digital Library
Transgenic Plants Lower the Costs of Cellulosic Biofuels (Fact Sheet) (open access)

Transgenic Plants Lower the Costs of Cellulosic Biofuels (Fact Sheet)

A new transgenic maize was observed to be less recalcitrant than wild-type biomass, as manifested through lower severity requirements to achieve comparable levels of conversion. Expression of a single gene derived from bacteria in plants has resulted in transgenic plants that are easier and cheaper to convert into biofuels. Part of the high production cost of cellulosic biofuels is the relatively poor accessibility of substrates to enzymes due to the strong associations between plant cell wall components. This biomass recalcitrance makes costly thermochemical pretreatment necessary. Scientists at the National Renewable Energy Laboratory (NREL) have created transgenic maize expressing an active glycosyl hydrolase enzyme, E1 endoglucanase, originally isolated from a thermophilic bacterium, Acidothermus cellulolyticus. This engineered feedstock was observed to be less recalcitrant than wild-type biomass when subjected to reduced severity pretreatments and post-pretreatment enzymatic hydrolysis. This reduction in recalcitrance was manifested through lower severity requirements to achieve comparable levels of conversion of wild-type biomass. The improvements observed are significant enough to positively affect the economics of the conversion process through decreased capital construction costs and decreased degradation products and inhibitor formation.
Date: November 1, 2011
Creator: unknown
System: The UNT Digital Library
Dual and Triple Ion-Beam Irradiations of Fe, Fe(Cr) and Fe(Cr)-ODS Final Report: IAEA SMoRE CRP (open access)

Dual and Triple Ion-Beam Irradiations of Fe, Fe(Cr) and Fe(Cr)-ODS Final Report: IAEA SMoRE CRP

Structures of nanoparticles in Fe-16Cr-4.5Al-0.3Ti-2W-0.37Y2O3 (K3) and Fe-20Cr-4.5Al-0.34Ti-0.5Y2O3 (MA956) oxide dispersion strengthened (ODS) ferritic steels produced by mechanical alloying (MA) and followed by hot extrusion have been studied using high-resolution transmission electron microscopy (HRTEM) techniques to gain insight about the formation mechanism of nanoparticles in MA/ODS steels. The observations of Y-Al-O complex-oxide nanoparticles in both ODS steels imply that decomposition of Y2O3 in association with internal oxidation of Al occurred during mechanical alloying. While the majority of oxide nanoparticles formed in both steels is Y4Al2O9, a few oxide particles of YAlO3 are also occasionally observed. These results reveal that Ti (0.3 wt %) plays an insignificant role in forming oxide nanoparticles in the presence of Al (4.5 wt %). HRTEM observations of crystalline nanoparticles larger than {approx}2 nm and amorphous or disordered cluster domains smaller than {approx}2 nm provide an insight into the formation mechanism of oxide nanoparticle in MA/ODS steels, which we believe from our observations involves a solid-state amorphous precursor followed by recrystallization. Dual ion-beam irradiations using He{sup +} + Fe{sup +8} ions were employed to gain more detailed insight about the role of nanoparticles in suppressing radiation-induced swelling. This is elaborated through TEM examinations of cavity distributions …
Date: November 20, 2011
Creator: Fluss, M. J.; Hsiung, L. L. & Marian, J.
System: The UNT Digital Library
Elements of a pragmatic approach for dealing with bias and uncertainty in experiments through predictions : experiment design and data conditioning; %22real space%22 model validation and conditioning; hierarchical modeling and extrapolative prediction. (open access)

Elements of a pragmatic approach for dealing with bias and uncertainty in experiments through predictions : experiment design and data conditioning; %22real space%22 model validation and conditioning; hierarchical modeling and extrapolative prediction.

This report explores some important considerations in devising a practical and consistent framework and methodology for utilizing experiments and experimental data to support modeling and prediction. A pragmatic and versatile 'Real Space' approach is outlined for confronting experimental and modeling bias and uncertainty to mitigate risk in modeling and prediction. The elements of experiment design and data analysis, data conditioning, model conditioning, model validation, hierarchical modeling, and extrapolative prediction under uncertainty are examined. An appreciation can be gained for the constraints and difficulties at play in devising a viable end-to-end methodology. Rationale is given for the various choices underlying the Real Space end-to-end approach. The approach adopts and refines some elements and constructs from the literature and adds pivotal new elements and constructs. Crucially, the approach reflects a pragmatism and versatility derived from working many industrial-scale problems involving complex physics and constitutive models, steady-state and time-varying nonlinear behavior and boundary conditions, and various types of uncertainty in experiments and models. The framework benefits from a broad exposure to integrated experimental and modeling activities in the areas of heat transfer, solid and structural mechanics, irradiated electronics, and combustion in fluids and solids.
Date: November 1, 2011
Creator: Romero, Vicente Jose
System: The UNT Digital Library
Independent Confirmatory Survey Report for the University of Arizona Nuclear Reactor Laboratory, Tucson, Arizona (open access)

Independent Confirmatory Survey Report for the University of Arizona Nuclear Reactor Laboratory, Tucson, Arizona

The University of Arizona (University) research reactor is a TRIGA swimming pool type reactor designed by General Atomics and constructed at the University in 1958. The reactor first went into operation in December of 1958 under U.S. Nuclear Regulatory Commission (NRC) license R-52 until final shut down on May 18, 2010. Initial site characterization activities were conducted in February 2009 during ongoing reactor operations to assess the radiological status of the Nuclear Reactor Laboratory (NRL) excluding the reactor tank, associated components, and operating systems. Additional post-shutdown characterization activities were performed to complete characterization activities as well as verify assumptions made in the Decommissioning Plan (DP) that were based on a separate activation analysis (ESI 2009 and WMG 2009). Final status survey (FSS) activities began shortly after the issuance of the FSS plan in May 2011. The contractor completed measurement and sampling activities during the week of August 29, 2011.
Date: November 11, 2011
Creator: Altic, Nick A.
System: The UNT Digital Library
A general model of resource production and exchange in systems of interdependent specialists. (open access)

A general model of resource production and exchange in systems of interdependent specialists.

Infrastructures are networks of dynamically interacting systems designed for the flow of information, energy, and materials. Under certain circumstances, disturbances from a targeted attack or natural disasters can cause cascading failures within and between infrastructures that result in significant service losses and long recovery times. Reliable interdependency models that can capture such multi-network cascading do not exist. The research reported here has extended Sandia's infrastructure modeling capabilities by: (1) addressing interdependencies among networks, (2) incorporating adaptive behavioral models into the network models, and (3) providing mechanisms for evaluating vulnerability to targeted attack and unforeseen disruptions. We have applied these capabilities to evaluate the robustness of various systems, and to identify factors that control the scale and duration of disruption. This capability lays the foundation for developing advanced system security solutions that encompass both external shocks and internal dynamics.
Date: November 1, 2011
Creator: Conrad, Stephen Hamilton; Finley, Patrick D.; Beyeler, Walter Eugene; Brown, Theresa Jean; Glass, Robert John, Jr.; Breen, Peter et al.
System: The UNT Digital Library
Energy Savings and Green Initiatives Project Grant (open access)

Energy Savings and Green Initiatives Project Grant

This project entails retrofitting all four foot, 2, 3 and 4 bulb 40 watt T12 fixtures to T8 28 watt and 150 watt incandescent to 26 watt compact fluorescent bulbs. In total, 2,086 fixtures will be retrofitted
Date: November 21, 2011
Creator: MacLennan, Kathy
System: The UNT Digital Library
Sensible Heat, Direct, Dual-Media Thermal Energy Storagy System: Phase 1 Final Technical Report (open access)

Sensible Heat, Direct, Dual-Media Thermal Energy Storagy System: Phase 1 Final Technical Report

Work under this project has ultimately focused on the development of a modular packed bed based thermal energy storage system. The design assumes the use of standard segments of carbon steel pipe filled with spherical materials creating a packed bed. These materials are assumed to be manufactured in such a way that the spherical shape is uniform throughout the packed bed. Out of 32 candidate materials evaluated, 8 materials remain. Each material meets the Phase I milestones that were specified for this storage system: a round trip efficiency in excess of 93%, and a required volume of packed bed material that does not exceed the volume of molten salt used in a two-tank storage system with equivalent thermal performance.
Date: November 4, 2011
Creator: Newmarker, Marc & Campbell, Mark
System: The UNT Digital Library
Linear diffusion into a Faraday cage. (open access)

Linear diffusion into a Faraday cage.

Linear lightning diffusion into a Faraday cage is studied. An early-time integral valid for large ratios of enclosure size to enclosure thickness and small relative permeability ({mu}/{mu}{sub 0} {le} 10) is used for this study. Existing solutions for nearby lightning impulse responses of electrically thick-wall enclosures are refined and extended to calculate the nearby lightning magnetic field (H) and time-derivative magnetic field (HDOT) inside enclosures of varying thickness caused by a decaying exponential excitation. For a direct strike scenario, the early-time integral for a worst-case line source outside the enclosure caused by an impulse is simplified and numerically integrated to give the interior H and HDOT at the location closest to the source as well as a function of distance from the source. H and HDOT enclosure response functions for decaying exponentials are considered for an enclosure wall of any thickness. Simple formulas are derived to provide a description of enclosure interior H and HDOT as well. Direct strike voltage and current bounds for a single-turn optimally-coupled loop for all three waveforms are also given.
Date: November 1, 2011
Creator: Warne, Larry Kevin; Lin, Yau Tang; Merewether, Kimball O. & Chen, Kenneth C.
System: The UNT Digital Library
Symposium on Plant Protein Phosphorylation (open access)

Symposium on Plant Protein Phosphorylation

Protein phosphorylation and dephosphorylation play key roles in many aspects of plant biology, including control of cell division, pathways of carbon and nitrogen metabolism, pattern formation, hormonal responses, and abiotic and biotic responses to environmental signals. A Symposium on Plant Protein Phosphorylation was hosted on the Columbia campus of the University of Missouri from May 26-28, 2010. The symposium provided an interdisciplinary venue at which scholars studying protein modification, as it relates to a broad range of biological questions and using a variety of plant species, presented their research. It also provided a forum where current international challenges in studies related to protein phosphorylation could be examined. The symposium also stimulated research collaborations through interactions and networking among those in the research community and engaged students and early career investigators in studying issues in plant biology from an interdisciplinary perspective. The proposed symposium, which drew 165 researchers from 13 countries and 21 States, facilitated a rapid dissemination of acquired knowledge and technical expertise regarding protein phosphorylation in plants to a broad range of plant biologists worldwide.
Date: November 1, 2011
Creator: Walker, John C.
System: The UNT Digital Library