PINS Testing and Modification for Explosive Identification (open access)

PINS Testing and Modification for Explosive Identification

The INL's Portable Isotopic Neutron Spectroscopy System (PINS)1 non-intrusively identifies the chemical fill of munitions and sealed containers. PINS is used routinely by the U.S. Army, the Defense Threat Reduction Agency, and foreign military units to determine the contents of munitions and other containers suspected to contain explosives, smoke-generating chemicals, and chemical warfare agents such as mustard and nerve gas. The objects assayed with PINS range from softball-sized M139 chemical bomblets to 200 gallon DOT 500X ton containers. INL had previously examined2 the feasibility of using a similar system for the identification of explosives, and based on this proof-of-principle test, the development of a dedicated system for the identification of explosives in an improvised nuclear device appears entirely feasible. INL has been tasked by NNSA NA-42 Render Safe Research and Development with the development of such a system.
Date: September 1, 2011
Creator: Seabury, E. H. & Caffrey, A. J.
System: The UNT Digital Library
Synthesis and Characterization of Oxide Feedstock Powders for the Fuel Cycle R&D Program (open access)

Synthesis and Characterization of Oxide Feedstock Powders for the Fuel Cycle R&D Program

Nuclear fuel feedstock properties, such as physical, chemical, and isotopic characteristics, have a significant impact on the fuel fabrication process and, by extension, the in-reactor fuel performance. This has been demonstrated through studies with UO{sub 2} spanning greater than 50 years. The Fuel Cycle R&D Program with The Department of Energy Office of Nuclear Energy has initiated an effort to develop a better understanding of the relationships between oxide feedstock, fresh fuel properties, and in-reactor fuel performance for advanced mixed oxide compositions. Powder conditioning studies to enable the use of less than ideal powders for ceramic fuel pellet processing are ongoing at Los Alamos National Laboratory (LANL) and an understanding of methods to increase the green density and homogeneity of pressed pellets has been gained for certain powders. Furthermore, Oak Ridge National Laboratory (ORNL) is developing methods for the co-conversion of mixed oxides along with techniques to analyze the degree of mixing. Experience with the fabrication of fuel pellets using co-synthesized multi-constituent materials is limited. In instances where atomically mixed solid solutions of two or more species are needed, traditional ceramic processing methods have been employed. Solution-based processes may be considered viable synthesis options, including co-precipitation (AUPuC), direct precipitation, direct-conversion …
Date: September 1, 2010
Creator: Voit, Stewart L.; Vedder, Raymond James & Johnson, Jared A.
System: The UNT Digital Library
Covalently crosslinked diels-alder polymer networks. (open access)

Covalently crosslinked diels-alder polymer networks.

This project examines the utility of cycloaddition reactions for the synthesis of polymer networks. Cycloaddition reactions are desirable because they produce no unwanted side reactions or small molecules, allowing for the formation of high molecular weight species and glassy crosslinked networks. Both the Diels-Alder reaction and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) were studied. Accomplishments include externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating, the creation of Diels-Alder based photoresists, and the successful photochemical catalysis of CuAAC as an alternative to the use of ascorbic acid for the generation of Cu(I) in click reactions. An analysis of the results reveals that these new methods offer the promise of efficiently creating robust, high molecular weight species and delicate three dimensional structures that incorporate chemical functionality in the patterned material. This work was performed under a Strategic Partnerships LDRD during FY10 and FY11 as part of a Sandia National Laboratories/University of Colorado-Boulder Excellence in Science and Engineering Fellowship awarded to Brian J. Adzima, a graduate student at UC-Boulder. Benjamin J. Anderson (Org. 1833) was the Sandia National Laboratories point-of-contact for this fellowship.
Date: September 1, 2011
Creator: Bowman, Christopher (University of Colorado, Boulder, CO); Adzima, Brian J. (University of Colorado, Boulder, CO) & Anderson, Benjamin John
System: The UNT Digital Library
Potential nanotechnology applications for reducing freshwater consumption at coal fired power plants : an early view. (open access)

Potential nanotechnology applications for reducing freshwater consumption at coal fired power plants : an early view.

This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the overall research effort of the Existing Plants Research Program by evaluating water issues that could impact power plants. A growing challenge to the economic production of electricity from coal-fired power plants is the demand for freshwater, particularly in light of the projected trends for increasing demands and decreasing supplies of freshwater. Nanotechnology uses the unique chemical, physical, and biological properties that are associated with materials at the nanoscale to create and use materials, devices, and systems with new functions and properties. It is possible that nanotechnology may open the door to a variety of potentially interesting ways to reduce freshwater consumption at power plants. This report provides an overview of how applications of nanotechnology could potentially help reduce freshwater use at coal-fired power plants. It was developed by (1) identifying areas within a coal-fired power plant's operations where freshwater use occurs and could possibly be reduced, (2) conducting a literature review to identify potential applications of nanotechnology for facilitating such reductions, and …
Date: September 17, 2010
Creator: Elcock, D. (Environmental Science Division)
System: The UNT Digital Library
Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856). (open access)

Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856).

A new experimental technique to measure material shear strength at high pressures has been developed for use on magneto-hydrodynamic (MHD) drive pulsed power platforms. By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse VISAR system from which the sample strength is determined.
Date: September 1, 2010
Creator: Lamppa, Derek C.; Haill, Thomas A.; Alexander, C. Scott & Asay, James Russell
System: The UNT Digital Library
Energy Saving Melting and Revert Reduction Technology: Aging of Graphitic Cast Irons and Machinability (open access)

Energy Saving Melting and Revert Reduction Technology: Aging of Graphitic Cast Irons and Machinability

The objective of this task was to determine whether ductile iron and compacted graphite iron exhibit age strengthening to a statistically significant extent. Further, this effort identified the mechanism by which gray iron age strengthens and the mechanism by which age-strengthening improves the machinability of gray cast iron. These results were then used to determine whether age strengthening improves the machinability of ductile iron and compacted graphite iron alloys in order to develop a predictive model of alloy factor effects on age strengthening. The results of this work will lead to reduced section sizes, and corresponding weight and energy savings. Improved machinability will reduce scrap and enhance casting marketability. Technical Conclusions: • Age strengthening was demonstrated to occur in gray iron ductile iron and compacted graphite iron. • Machinability was demonstrated to be improved by age strengthening when free ferrite was present in the microstructure, but not in a fully pearlitic microstructure. • Age strengthening only occurs when there is residual nitrogen in solid solution in the Ferrite, whether the ferrite is free ferrite or the ferrite lamellae within pearlite. • Age strengthening can be accelerated by Mn at about 0.5% in excess of the Mn/S balance Estimated energy savings …
Date: September 19, 2012
Creator: Richards, Von L.
System: The UNT Digital Library
Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2010 (open access)

Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2010

Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelity computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or “Core Modeling Update”) Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF).
Date: September 1, 2010
Creator: Aryaeinejad, Rahmat; Crawford, Douglas S.; DeHart, Mark D.; Griffith, George W.; Lucas, D. Scott; Nielsen, Joseph W. et al.
System: The UNT Digital Library
Evaluation and Testing of the ADVANTG Code on SNM Detection (open access)

Evaluation and Testing of the ADVANTG Code on SNM Detection

Pacific Northwest National Laboratory (PNNL) has been tasked with evaluating the effectiveness of ORNL’s new hybrid transport code, ADVANTG, on scenarios of interest to our NA-22 sponsor, specifically of detection of diversion of special nuclear material (SNM). PNNL staff have determined that acquisition and installation of ADVANTG was relatively straightforward for a code in its phase of development, but probably not yet sufficient for mass distribution to the general user. PNNL staff also determined that with little effort, ADVANTG generated weight windows that typically worked for the problems and generated results consistent with MCNP. With slightly greater effort of choosing a finer mesh around detectors or sample reaction tally regions, the figure of merit (FOM) could be further improved in most cases. This does take some limited knowledge of deterministic transport methods. The FOM could also be increased by limiting the energy range for a tally to the energy region of greatest interest. It was then found that an MCNP run with the full energy range for the tally showed improved statistics in the region used for the ADVANTG run. The specific case of interest chosen by the sponsor is the CIPN project from Las Alamos National Laboratory (LANL), which …
Date: September 24, 2013
Creator: Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S. & Hayes, John W.
System: The UNT Digital Library
User s Guide for REFoffSpec Version 1.5.4 (open access)

User s Guide for REFoffSpec Version 1.5.4

This document is a user s guide for the IDL software REFoffSpec version 1.5.4 whose purpose is to aggregate for analysis NeXus data files from the magnetism and liquids reflectometer experiments at the Oak Ridge National Laboratory Spallation Neutron Source. The software is used to scale and align multiple data files that constitute a continuous set for an experimental run. The User s Guide for REFoffSepc explains step by step the process using a specific example run. Output screens are provided to orient the user at each step. The guide documents in detail changes made to the original REFoffSpec code during the period November 2009 and January 2011. At the time of the completion of this version of the code it was accessible from the sns_tools interface as a beta version.
Date: September 1, 2012
Creator: Ward, Richard C; Bilheux, Jean-Christophe; Lauter, Valeria & Ambaye, Haile Arena
System: The UNT Digital Library
Summary of operations and performance of the Utica aquifer and North Lake Basin Wetlands restoration project in December 2010-November 2011. (open access)
Solar Energy Windows and Smart IR Switchable Building Technologies (open access)

Solar Energy Windows and Smart IR Switchable Building Technologies

The three building envelope functions with the largest impact on the energy usage are illumination, energy flux and energy production. In general, these three functions are addressed separately in the building design. A step change toward a zero-energy building can be achieved with a glazing system that combines these three functions and their control into a single unit. In particular, significant value could be realized if illumination into the building is dynamically controlled such that it occurs during periods of low load on the grid (e.g., morning) to augment illumination supplied by interior lights and then to have that same light diverted to PV energy production and the thermal energy rejected during periods of high load on the grid. The objective of this project is to investigate the feasibility of a glazing unit design that integrates these three key functions (illumination and energy flux control, and power production) into a single module.
Date: September 30, 2011
Creator: McCarny, James & Kornish, Brian
System: The UNT Digital Library
Advanced Energy Retrofit Guide Office Buildings (open access)

Advanced Energy Retrofit Guide Office Buildings

The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.
Date: September 27, 2011
Creator: Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave et al.
System: The UNT Digital Library
NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS (open access)

NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS

Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries.
Date: September 1, 2011
Creator: Hemrick, James Gordon
System: The UNT Digital Library
Department of Energy Awards $43 Million to Spur Offshore Wind Energy, Wind Program Newsletter, September 2011 Edition (Brochure) (open access)

Department of Energy Awards $43 Million to Spur Offshore Wind Energy, Wind Program Newsletter, September 2011 Edition (Brochure)

EERE Wind Program Quarterly Newsletter - September 2011. In September, the U.S. Department of Energy announced that it will award $43 million over the next five years to 41 projects across 20 states to speed technical innovations, lower costs, and shorten the timeline for deploying offshore wind energy systems. The projects will advance wind turbine design tools and hardware, improve information about U.S. offshore wind resources, and accelerate the deployment of offshore wind by reducing market barriers such as supply chain development, transmission and infrastructure. The projects announced in September focus on approaches to advancing offshore technology and removing market barriers to responsible offshore wind energy deployment. Funding is subject to Congressional appropriations.
Date: September 1, 2011
Creator: unknown
System: The UNT Digital Library
CIBS Solar Cell Development Final Scientific/Technical Report (open access)

CIBS Solar Cell Development Final Scientific/Technical Report

Efforts to fabricate and study a new photovoltaic material, copper indium boron diselenide (CuInxB1-xSe2 or CIBS), were undertaken. Attempts to prepare CIBS using sputtering deposition techniques resulted in segregation of boron from the rest of elements in the material. CIBS nanocrystals were prepared from the reaction of elemental Se with CuCl, InCl3, and boric acid in solution, but the product material quickly decomposed upon heating that was required in attempts to convert the nanocrystals into a thin film. The investigation of the reasons for the lack of CIBS material stability led to new structure-property studies of closely-related photovoltaic systems as well as studies of new solar cell materials and processing methods that could enhance the development of next-generation solar technologies. A detailed compositional study of CuIn1-xAlxSe2 (CIAS, a system closely related to CIBS) revealed a non-linear correlation between crystal lattice size and the Al/(In+Al) ratios with dual-phase formation being observed. A new nanocrystal-to-thin-film processing method was developed for the preparation of CuIn1-xGaxSe2 (CIGS) thin films in which colloidal Se particles are sprayed in contact with CuIn1-xGaxS2 nanoparticles and heated in an argon atmosphere with no other Se source in the system. The process is non-vacuum and does not require toxic …
Date: September 28, 2011
Creator: Exstrom, Christopher L.; Soukup, Rodney J. & Ianno, Natale J.
System: The UNT Digital Library
Investigating the effectiveness of many-core network processors for high performance cyber protection systems. Part I, FY2011. (open access)

Investigating the effectiveness of many-core network processors for high performance cyber protection systems. Part I, FY2011.

This report documents our first year efforts to address the use of many-core processors for high performance cyber protection. As the demands grow for higher bandwidth (beyond 1 Gbits/sec) on network connections, the need to provide faster and more efficient solution to cyber security grows. Fortunately, in recent years, the development of many-core network processors have seen increased interest. Prior working experiences with many-core processors have led us to investigate its effectiveness for cyber protection tools, with particular emphasis on high performance firewalls. Although advanced algorithms for smarter cyber protection of high-speed network traffic are being developed, these advanced analysis techniques require significantly more computational capabilities than static techniques. Moreover, many locations where cyber protections are deployed have limited power, space and cooling resources. This makes the use of traditionally large computing systems impractical for the front-end systems that process large network streams; hence, the drive for this study which could potentially yield a highly reconfigurable and rapidly scalable solution.
Date: September 1, 2011
Creator: Wheeler, Kyle Bruce; Naegle, John Hunt; Wright, Brian J.; Benner, Robert E., Jr.; Shelburg, Jeffrey Scott; Pearson, David Benjamin et al.
System: The UNT Digital Library
Solid oxide electrochemical reactor science. (open access)

Solid oxide electrochemical reactor science.

Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.
Date: September 1, 2010
Creator: Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea & Key, Robert J. (Colorado School of Mines, Golden, CO)
System: The UNT Digital Library
Activated Carbon Composites for Air Separation (open access)

Activated Carbon Composites for Air Separation

Coal-derived synthesis gas is a potential major source of hydrogen for fuel cells. Oxygen-blown coal gasification is an efficient approach to achieving the goal of producing hydrogen from coal, but a cost-effective means of enriching O2 concentration in air is required. A key objective of this project is to assess the utility of a system that exploits porous carbon materials and electrical swing adsorption to produce an O2-enriched air stream for coal gasification. As a complement to O2 and N2 adsorption measurements, CO2 was used as a more sensitive probe molecule for the characterization of molecular sieving effects. To further enhance the potential of activated carbon composite materials for air separation, work was implemented on incorporating a novel twist into the system; namely the addition of a magnetic field to influence O2 adsorption, which is accompanied by a transition between the paramagnetic and diamagnetic states. The preliminary findings in this respect are discussed.
Date: September 1, 2011
Creator: Baker, Frederick S.; Contescu, Cristian I.; Tsouris, Costas & Burchell, Timothy D.
System: The UNT Digital Library
Effects of morphology on ion transport in ionomers for energy storage. (open access)

Effects of morphology on ion transport in ionomers for energy storage.

None
Date: September 1, 2012
Creator: Frischknecht, Amalie Lucile; Alam, Todd Michael; Azoulay, Jason David; Bolintineanu, Dan; Cordaro, Joseph Gabriel; Hall, Lisa Michelle et al.
System: The UNT Digital Library
Hopewell Beneficial CO2 Capture for Production of Fuels, Fertilizer and Energy (open access)

Hopewell Beneficial CO2 Capture for Production of Fuels, Fertilizer and Energy

For Phase 1 of this project, the Hopewell team developed a detailed design for the Small Scale Pilot-Scale Algal CO2 Sequestration System. This pilot consisted of six (6) x 135 gallon cultivation tanks including systems for CO2 delivery and control, algal cultivation, and algal harvesting. A feed tank supplied Hopewell wastewater to the tanks and a receiver tank collected the effluent from the algal cultivation system. The effect of environmental parameters and nutrient loading on CO2 uptake and sequestration into biomass were determined. Additionally the cost of capturing CO2 from an industrial stack emission at both pilot and full-scale was determined. The engineering estimate evaluated Amine Guard technology for capture of pure CO2 and direct stack gas capture and compression. The study concluded that Amine Guard technology has lower lifecycle cost at commercial scale, although the cost of direct stack gas capture is lower at the pilot scale. Experiments conducted under high concentrations of dissolved CO2 did not demonstrate enhanced algae growth rate. This result suggests that the dissolved CO2 concentration at neutral pH was already above the limiting value. Even though dissolved CO2 did not show a positive effect on biomass growth, controlling its value at a constant set-point …
Date: September 30, 2010
Creator: UOP LLC
System: The UNT Digital Library
Melting Hanford LAW into Iron-Phosphate Glass in a CCIM (open access)

Melting Hanford LAW into Iron-Phosphate Glass in a CCIM

A vitrification test has been conducted using the cold crucible induction melter (CCIM) test system at the Idaho National Laboratory. The test was conducted to demonstrate the vitrification of a Hanford low activity waste (LAW) that contains relatively large amounts of sulfate and sodium, compared to other radioactive Hanford waste streams. The high sulfate content limits the potential loading of this waste stream in conventional borosilicate glass, so this test demonstrated how this waste stream could be vitrified in an iron-phosphate glass that can tolerate higher levels of sulfate.
Date: September 1, 2011
Creator: Soelberg, Nick & Rossberg, Sharna
System: The UNT Digital Library
DE-FG02-08ER64658 (OASIS) - Final Technical Report (open access)

DE-FG02-08ER64658 (OASIS) - Final Technical Report

Project OASIS (Operation of Advanced Structures, Interfaces and Sub-components for MEAs) was a 12 month project that ran from 1st September 2008 to 31st August 2009, and was managed by the Department of Energy Office of Science, Chicago Office, as Award No DE-FG02-08ER64658, with Johnson Matthey Fuel Cells Inc. as the sole contractor. The project was completed on schedule, with technical successes (details below) and payment of the full grant award made by DOE. The aim of the project was the development of membrane electrode assemblies (MEAs) for H2/air polymer electrolyte membrane (PEM) fuel cells that would give higher performance under hot/dry and dry operating conditions, ideally with no loss of performance under wet conditions. Reducing or eliminating the need for humidifying the incoming gases will allow significant system cost and size reduction for many fuel cell applications including automotive, stationary and back-up power, and portable systems. Portable systems are also of particular interest in military markets. In previous work Johnson Matthey Fuel Cells had developed very stable, corrosion-resistant catalysts suitable for resisting degradation by carbon corrosion in particular. These materials were applied within the OASIS project as they are considered necessary for systems such as automotive where multiple start-stop …
Date: September 5, 2013
Creator: Sharman, Jonathan
System: The UNT Digital Library
Logistical simulation of spent nuclear fuel disposal in a salt repository with low temperature limits. (open access)

Logistical simulation of spent nuclear fuel disposal in a salt repository with low temperature limits.

None
Date: September 1, 2012
Creator: Kalinina, Elena Arkadievna & Hardin, Ernest L.
System: The UNT Digital Library
Performance Metrics for Commercial Buildings (open access)

Performance Metrics for Commercial Buildings

Commercial building owners and operators have requested a standard set of key performance metrics to provide a systematic way to evaluate the performance of their buildings. The performance metrics included in this document provide standard metrics for the energy, water, operations and maintenance, indoor environmental quality, purchasing, waste and recycling and transportation impact of their building. The metrics can be used for comparative performance analysis between existing buildings and industry standards to clarify the impact of sustainably designed and operated buildings.
Date: September 30, 2010
Creator: Fowler, Kimberly M.; Wang, Na; Romero, Rachel L. & Deru, Michael P.
System: The UNT Digital Library