Validation of Numerical Two-Fluid and Kinetic Plasma Models (open access)

Validation of Numerical Two-Fluid and Kinetic Plasma Models

This was a four year grant commencing October 1, 2003 and finishing September 30, 2007. The funding was primarily used to support the work of the Principal Investigator, who collaborated with Profs. Scott Parker and John Cary at U. Colorado, and with two students, N. Xiang and J. Cheng also of U. Colorado. The technical accomplishments of this grant can be found in the publications listed in the final Section here. The main accomplishments of the grant work were: (1) Development and implementation of time-implicit two-fluid simulation methods in collaboration with the NIMROD team; and (2) Development and testing of a new time-implicit delta-f, energy-conserving method The basic two-fluid method, with many improvements is used in present NIMROD calculations. The energy-conserving delta-f method is under continuing development under contract between Coronado Consulting, a New Mexico sole proprietorship and the Oak Ridge National Laboratory.
Date: March 25, 2011
Creator: Barnes, Daniel
System: The UNT Digital Library
technical report and journal articles (open access)

technical report and journal articles

Objective: This project seeks to improve the application of noble gas isotope studies to multiphase fluid processes in the Earth's crust by (1) identifying the important noble gas carrier phases in sediments to address the processes that have led to the observed enrichment and depletion patterns in sedimentary rocks and fluids, (2) examine the mechanisms by which such noble gas patterns are acquired, trapped and subsequently released to mobile crustal fluids, and (3) evaluate the time and length scales for the transport of noble gas components, such as radiogenic 4He, through the continental crust.. Project Description: Sedimentary rocks and oil field gases typically are enriched in heavy noble gases: Xe/Ar ratios of ~10-10,000 times the ratio in air have been observed that cannot be explained by adsorption hypotheses. Laboratory experiments designed to isolate sedimentary phases for noble gas analysis are conducted to identify the carrier phase(s). It has been observed that radiogenic 4He accumulates in confined aquifer waters at rates that exceed the rate of local production and approaching the whole crustal production rate. A literature evaluation of 4He, 3He crustal fluxes is being conducted to evaluate crustal scale mass transport in terms of the rate, mechanisms, temporal and spatial …
Date: March 25, 2011
Creator: Torgerson, Thomas & Kennedy, B. M.
System: The UNT Digital Library
Mathematical Model of Cold Cap—Preliminary One-Dimensional Model Development (open access)

Mathematical Model of Cold Cap—Preliminary One-Dimensional Model Development

The ultimate goal of batch-melting studies, laboratory-scale, large-scale, or mathematical modeling is to increase the rate of glass processing in an energy-efficient manner. Mathematical models are not merely an intermediate step between laboratory-scale and large-scale studies, but are also an important tool for assessing the responses of melters to vast combinations of process parameters. In the simplest melting situation considered in this study, a cold cap of uniform thickness rests on a pool of molten glass from which it receives a steady uniform heat flux. Thus, as the feed-to-glass conversion proceeds, the temperature, velocity, and extent of feed reactions are functions of the position along the vertical coordinate, and these functions do not vary with time. This model is used for the sensitivity analyses on the effects of key parameters on the cold-cap behavior.
Date: March 25, 2011
Creator: Pokorny, Richard & Hrma, Pavel R.
System: The UNT Digital Library
EFFECT OF FILTER TEMPERATURE ON TRAPPING ZINC VAPOR (open access)

EFFECT OF FILTER TEMPERATURE ON TRAPPING ZINC VAPOR

To address the {sup 65}Zn contamination issue in the TEF, a multi-task experimental program was initiated. The first experimental task was completed and is reported in Ref. 1. The results of the second experimental task are reported here. This task examined the effect of filter temperature on trapping efficiency and deposit morphology. Based on the first experimental tasks that examined filter pore size and trapping efficiency, stainless steel filter media with a 20 {micro}m pore size was selected. A series of experiments using these filters was conducted during this second task to determine the effect of filter temperature on zinc vapor trapping efficiency, adhesion and morphology. The tests were conducted with the filters heated to 60, 120, and 200 C; the zinc source material was heated to 400 C for all the experiments to provide a consistent zinc source. The samples were evaluated for mass change, deposit adhesion and morphology. As expected from the physical vapor deposition literature, a difference in deposit morphology and appearance was observed between the three filter temperatures. The filter held at 60 C had the largest average mass gain while the 120 and 200 C filters exhibited similar but lower weight gains. The standard deviations …
Date: March 25, 2011
Creator: Korinko, P.
System: The UNT Digital Library