Resource Type

3 Matching Results

Results open in a new window/tab.

Spectroscopic study of coal structure and reactivity (open access)

Spectroscopic study of coal structure and reactivity

Work done during this period (December 15, 1989 to March 14, 1990) covered two of the three primary areas of study of this project. The first involved the continuing development a of step-scanning interferometer for the photoacoustic depth-profiling of materials whose composition varies in the spatial region between 5 and 50 {mu}m from its surface. The second covered the initial construction of an on-line interface between a supercritical fluid chromatograph (SFC) and a Fourier transform infrared (FT-IR) spectrometer for monitoring the composition of coal extracts. 5 refs., 8 figs.
Date: September 7, 1990
Creator: Rabenstein, D.L.
System: The UNT Digital Library
Spectroscopic study of coal structure and reactivity (open access)

Spectroscopic study of coal structure and reactivity

The aim of this project is to perform quantitative analysis of the Fourier transform infrared (FT-IR) spectra of coals and coal extracts. The major difficulty encountered in the analysis of the FT-IR spectra of coals is the complexity of the bands, which consist of many closely overlapped peaks. Two techniques that are commonly used for the quantitative analysis of complex FT-IR spectra are deconvolution and curve-fitting. Deconvolution is a mathematical technique that narrows the speaks in a spectrum, thereby improving the effective resolution. Curve-fitting optimizes a set of ban parameters, using a least squares criterion, to simulate the true spectrum. We have recently completed work on optimizing the combination of these two techniques with the aim of applying this to the spectra of coals and coal extracts. Two types of deconvolution were investigated in this context: Fourier self-deconvolution (FSD) and maximum likelihood restoration (MLR). It was concluded that for noisy spectra MLR gave superior results. 3 refs., 7 figs.
Date: September 7, 1990
Creator: Rabenstein, D.L.
System: The UNT Digital Library
A systematic study of actinide production from the interactions of heavy ions with sup 248 Cm (open access)

A systematic study of actinide production from the interactions of heavy ions with sup 248 Cm

Production cross sections for heavy actinides produced from the interactions of {sup 12}C, {sup 31}P, {sup 40}Ar, and {sup 44}Ca ions with {sup 248}Cm were measured at energies ranging from 0.98 to 1.35 X Coulomb barrier. The recoiling reaction products were collected in copper or gold catcher foils located near the {sup 248}Cm target. Separate fractions of Bk, Cf, Es, Fm, and Md were obtained from a radiochemical separation procedure. For the {sup 12}C system, a He/KCl jet was used to transport the recoiling No activities of interest to a rotating wheel system. The isotopic distributions of the actinide products were found to be essentially symmetric about the maximum with full-widths-at-half-maximum of approximately 2.5 mass units. Isotopic distributions of the {sup 12}C, {sup 31}P, {sup 40}Ar, and {sup 44}Ca systems were found to be very similar to the {sup 40,48}Ca systems studied previously. The maxima of the isotopic distributions generally occurred for those reaction channels which involved the exchange of the fewest number of nucleons between the target and projectile for which the calculated excitation energy was a positive quantity. Additionally, the maxima of the excitation functions occurred at those projectile energies which were consistent with the calculated reaction barriers …
Date: September 7, 1990
Creator: Leyba, J.D.
System: The UNT Digital Library