LIP: The Livermore Interpolation Package, Version 1.3 (open access)

LIP: The Livermore Interpolation Package, Version 1.3

This report describes LIP, the Livermore Interpolation Package. Because LIP is a stand-alone version of the interpolation package in the Livermore Equation of State (LEOS) access library, the initials LIP alternatively stand for the ''LEOS Interpolation Package''. LIP was totally rewritten from the package described in [1]. In particular, the independent variables are now referred to as x and y, since the package need not be restricted to equation of state data, which uses variables {rho} (density) and T (temperature). LIP is primarily concerned with the interpolation of two-dimensional data on a rectangular mesh. The interpolation methods provided include piecewise bilinear, reduced (12-term) bicubic, and bicubic Hermite (biherm). There is a monotonicity-preserving variant of the latter, known as bimond. For historical reasons, there is also a biquadratic interpolator, but this option is not recommended for general use. A birational method was added at version 1.3. In addition to direct interpolation of two-dimensional data, LIP includes a facility for inverse interpolation (at present, only in the second independent variable). For completeness, however, the package also supports a compatible one-dimensional interpolation capability. Parametric interpolation of points on a two-dimensional curve can be accomplished by treating the components as a pair of one-dimensional …
Date: January 4, 2011
Creator: Fritsch, F N
System: The UNT Digital Library
LLNL Fire Protection Engineering Standard 5.8 Facility Survey Program (open access)

LLNL Fire Protection Engineering Standard 5.8 Facility Survey Program

This standard describes the LLNL Fire Protection Facility Survey Program. The purpose of this standard is to describe the type of facility surveys required to fulfill the requirements of DOE Order 420.1B, Facility Safety. Nothing in this standard is intended to prevent the development of a FHA using alternative approaches. Alternate approaches, including formatting, will be by exception only, and approved by the Fire Marshal/Fire Protection Engineering Subject Matter Expert in advance of their use.
Date: January 4, 2012
Creator: Sharry, J A
System: The UNT Digital Library
Radionuclide Air Emission Report for 2011 (open access)

Radionuclide Air Emission Report for 2011

Berkeley Lab operates facilities where radionuclides are produced, handled, stored, and potentially emitted. These facilities are subject to the EPA radioactive air emission regulations in 40 CFR 61, Subpart H. Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2011, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.01 mSv/yr]). These minor sources included about 90 stack sources and one source of diffuse emissions. There were no unplanned airborne radionuclide emissions from Berkeley lab operations. Emissions from minor sources (stacks and diffuse emissions) were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer codes, CAP88-PC and COMPLY, to calculate the effective dose equivalent to the maximally exposed individual (MEI).
Date: June 4, 2012
Creator: Wahl, Linnea
System: The UNT Digital Library
National Energy Efficiency Evaluation, Measurement and Verification (EM&V) Standard: Scoping Study of Issues and Implementation Requirements (open access)

National Energy Efficiency Evaluation, Measurement and Verification (EM&V) Standard: Scoping Study of Issues and Implementation Requirements

This report is a scoping study that identifies issues associated with developing a national evaluation, measurement and verification (EM&V) standard for end-use, non-transportation, energy efficiency activities. The objectives of this study are to identify the scope of such a standard and define EM&V requirements and issues that will need to be addressed in a standard. To explore these issues, we provide and discuss: (1) a set of definitions applicable to an EM&V standard; (2) a literature review of existing guidelines, standards, and 'initiatives' relating to EM&V standards as well as a review of 'bottom-up' versus 'top-down' evaluation approaches; (3) a summary of EM&V related provisions of two recent federal legislative proposals (Congressman Waxman's and Markey's American Clean Energy and Security Act of 2009 and Senator Bingaman's American Clean Energy Leadership Act of 2009) that include national efficiency resource requirements; (4) an annotated list of issues that that are likely to be central to, and need to be considered when, developing a national EM&V standard; and (5) a discussion of the implications of such issues. There are three primary reasons for developing a national efficiency EM&V standard. First, some policy makers, regulators and practitioners believe that a national standard would streamline …
Date: February 4, 2011
Creator: Schiller Consulting, Inc.; Schiller, Steven R.; Goldman, Charles A. & Galawish, Elsia
System: The UNT Digital Library
SMALL-SCALE SAFETY TEST REPORT FOR BUTYL NITRATE (open access)

SMALL-SCALE SAFETY TEST REPORT FOR BUTYL NITRATE

None
Date: April 4, 2013
Creator: Hsu, P C & Reynolds, J G
System: The UNT Digital Library
Equilibrium and Stability of Partial Toroidal Plasma Discharges (open access)

Equilibrium and Stability of Partial Toroidal Plasma Discharges

The equilibrium and stability of partial toroidal flux ropes are studied in detail in the laboratory, motivated by ubiquitous loop structures on the solar surface. The flux ropes studied here are magnetized arc discharges formed in the Magnetic Reconnection Experiment (MRX). It is found that these loops robustly maintain their equilibrium on time scales much longer than the Alfven time over a wide range of plasma current, guide eld strength, and angle between electrodes, even in the absence of a strapping fi eld. Additionally, the external kink stability of these flux ropes is found to be governed by the Kruskal-Shafranov limit for a flux rope with line-tied boundary conditions at both ends (q > 1).
Date: January 4, 2011
Creator: E. Oz, C. E. Myers, M. Yamada, H. Ji, R. Kulsrud, and J. Xie
System: The UNT Digital Library
Effects of Time, Heat, and Oxygen on K Basin Sludge Agglomeration, Strength, and Solids Volume (open access)

Effects of Time, Heat, and Oxygen on K Basin Sludge Agglomeration, Strength, and Solids Volume

Sludge disposition will be managed in two phases under the K Basin Sludge Treatment Project. The first phase is to retrieve the sludge that currently resides in engineered containers in the K West (KW) Basin pool at ~10 to 18°C. The second phase is to retrieve the sludge from interim storage in the sludge transport and storage containers (STSCs) and treat and package it in preparation for eventual shipment to the Waste Isolation Pilot Plant. The work described in this report was conducted to gain insight into how sludge may change during long-term containerized storage in the STSCs. To accelerate potential physical and chemical changes, the tests were performed at temperatures and oxygen partial pressures significantly greater than those expected in the T Plant canyon cells where the STSCs will be stored. Tests were conducted to determine the effects of 50°C oxygenated water exposure on settled quiescent uraninite (UO2) slurry and a full simulant of KW containerized sludge to determine the effects of oxygen and heat on the composition and mechanical properties of sludge. Shear-strength measurements by vane rheometry also were conducted for UO2 slurry, mixtures of UO2 and metaschoepite (UO3•2H2O), and for simulated KW containerized sludge. The results from …
Date: January 4, 2011
Creator: Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Daniel, Richard C. & Burns, Carolyn A.
System: The UNT Digital Library
Sensible Heat, Direct, Dual-Media Thermal Energy Storagy System: Phase 1 Final Technical Report (open access)

Sensible Heat, Direct, Dual-Media Thermal Energy Storagy System: Phase 1 Final Technical Report

Work under this project has ultimately focused on the development of a modular packed bed based thermal energy storage system. The design assumes the use of standard segments of carbon steel pipe filled with spherical materials creating a packed bed. These materials are assumed to be manufactured in such a way that the spherical shape is uniform throughout the packed bed. Out of 32 candidate materials evaluated, 8 materials remain. Each material meets the Phase I milestones that were specified for this storage system: a round trip efficiency in excess of 93%, and a required volume of packed bed material that does not exceed the volume of molten salt used in a two-tank storage system with equivalent thermal performance.
Date: November 4, 2011
Creator: Newmarker, Marc & Campbell, Mark
System: The UNT Digital Library
Power distributions in fresh and depleted LEU and HEU cores of the MITR reactor. (open access)

Power distributions in fresh and depleted LEU and HEU cores of the MITR reactor.

The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (UMo) is expected to allow the conversion of U.S. domestic high performance reactors like the MITR-II reactor. Toward this goal, core geometry and power distributions are presented. Distributions of power are calculated for LEU cores depleted with MCODE using an MCNP5 Monte Carlo model. The MCNP5 HEU and LEU MITR models were previously compared to experimental benchmark data for the MITR-II. This same model was used with a finer spatial depletion in order to generate power distributions for the LEU cores. The objective …
Date: April 4, 2012
Creator: Wilson, E. H.; Horelik, N. E.; Dunn, F. E.; Newton, T. H., Jr.; Hu, L.; Stevens, J. G. et al.
System: The UNT Digital Library
Ridge-Valley Graphs: Combinatorial Ridge Detection Using Jacobi Sets (open access)

Ridge-Valley Graphs: Combinatorial Ridge Detection Using Jacobi Sets

None
Date: February 4, 2011
Creator: Norgard, G & Bremer, P T
System: The UNT Digital Library
Alternate Funding Sources for the International Atomic Energy Agency (open access)

Alternate Funding Sources for the International Atomic Energy Agency

Since 1957, the International Atomic Energy Agency (IAEA) has worked to ensure the safe and responsible promotion of nuclear technology throughout the world. The IAEA operates at the intersection of the Nuclear Nonproliferation Treaty’s (NPT) fourth and third articles, which guarantee Parties to the Treaty the right to peaceful uses of nuclear technology, provided those activities are placed under safeguards verified by the IAEA. However, while the IAEA has enjoyed substantial success and prestige in the international community, there is a concern that its resources are being stretched to a point where it may no longer be possible to execute its multifaceted mission in its entirety. As noted by the Director General (DG) in 2008, demographics suggest that every aspect of the IAEA’s operations will be in higher demand due to increasing reliance on non-carbon-based energy and the concomitant nonproliferation, safety, and security risks that growth entails. In addition to these nuclear energy concerns, the demand for technical developmental assistance in the fields of food security, resource conservation, and human health is also predicted to increase as the rest of the world develops. Even with a 100% value-for-money rating by the U.S. Office of Management and Budget (OMB) and being …
Date: September 4, 2012
Creator: Toomey, Christopher; Wyse, Evan T.; Kurzrok, Andrew J. & Swarthout, Jordan M.
System: The UNT Digital Library
What Scientific Applications can Benefit from Hardware Transactional Memory? (open access)

What Scientific Applications can Benefit from Hardware Transactional Memory?

Achieving efficient and correct synchronization of multiple threads is a difficult and error-prone task at small scale and, as we march towards extreme scale computing, will be even more challenging when the resulting application is supposed to utilize millions of cores efficiently. Transactional Memory (TM) is a promising technique to ease the burden on the programmer, but only recently has become available on commercial hardware in the new Blue Gene/Q system and hence the real benefit for realistic applications has not been studied, yet. This paper presents the first performance results of TM embedded into OpenMP on a prototype system of BG/Q and characterizes code properties that will likely lead to benefits when augmented with TM primitives. We first, study the influence of thread count, environment variables and memory layout on TM performance and identify code properties that will yield performance gains with TM. Second, we evaluate the combination of OpenMP with multiple synchronization primitives on top of MPI to determine suitable task to thread ratios per node. Finally, we condense our findings into a set of best practices. These are applied to a Monte Carlo Benchmark and a Smoothed Particle Hydrodynamics method. In both cases an optimized TM version, …
Date: June 4, 2012
Creator: Schindewolf, M; Bihari, B; Gyllenhaal, J; Schulz, M; Wang, A & Karl, W
System: The UNT Digital Library
PHOSPHATE MANAGEMENT: FY2010 RESULTS OF PHOSPHATE PRECIPITATION TESTS (open access)

PHOSPHATE MANAGEMENT: FY2010 RESULTS OF PHOSPHATE PRECIPITATION TESTS

The Phosphate Management program seeks to develop treatment options for caustic phosphate solutions resulting from the caustic leaching of the bismuth phosphate sludge. The SRNL subtask investigated the precipitation of phosphate salts from caustic solutions through addition of fluoride and by crystallization. The scoping tests examined the: precipitation of phosphate by the addition of sodium fluoride to form the sodium fluorophosphate double salt, Na{sub 7}F(PO{sub 4}){sub 2} {center_dot} 19H{sub 2}O, crystallization of phosphate by reducing the temperature of saturated phosphate solutions, and combinations of precipitation and crystallization. A simplified leachate simulant was used in the study produced by dissolving sodium phosphate in 1 M to 3.5 M sodium hydroxide solutions. The results show that all three processes; precipitation with sodium fluoride, crystallization, and combined precipitation/crystallization can be effective for removing large amounts of phosphate from solution. The combined process of precipitation/crystallization showed >90% removal of phosphate at all hydroxide concentrations when cooling a non-saturated phosphate solution from 65 C to 25 C. Based on the measured solubility of sodium phosphate, pH adjustment/caustic addition will also remove large amounts of phosphate from solution (>80%). For all three processes, the phosphate concentration in the caustic solution must be managed to keep the …
Date: April 4, 2011
Creator: Hay, M. & King, W.
System: The UNT Digital Library
Alternative Sodium Recovery Technology—High Hydroxide Leaching: FY10 Status Report (open access)

Alternative Sodium Recovery Technology—High Hydroxide Leaching: FY10 Status Report

Boehmite leaching tests were carried out at NaOH concentrations of 10 M and 12 M, temperatures of 85°C and 60°C, and a range of initial aluminate concentrations. These data, and data obtained during earlier 100°C tests using 1 M and 5 M NaOH, were used to establish the dependence of the boehmite dissolution rate on hydroxide concentration, temperature, and initial aluminate concentration. A semi-empirical kinetic model for boehmite leaching was fitted to the data and used to calculate the NaOH additions required for leaching at different hydroxide concentrations. The optimal NaOH concentration for boehmite leaching at 85°C was estimated, based on minimizing the amount of Na that had to be added in NaOH to produce a given boehmite conversion.
Date: February 4, 2011
Creator: Mahoney, Lenna A.; Neiner, Doinita; Peterson, Reid A.; Rapko, Brian M.; Russell, Renee L. & Schonewill, Philip P.
System: The UNT Digital Library
Hydrogen Storage at Ambient Temperature by the Spillover Mechanism (open access)

Hydrogen Storage at Ambient Temperature by the Spillover Mechanism

The goal of this project was to develop new nanostructured sorbent materials, using the hydrogen spillover mechanism that could meet the DOE 2010 system targets for on-board vehicle hydrogen storage. Hydrogen spillover may be broadly defined as the transport (i.e., via surface diffusion) of dissociated hydrogen adsorbed or formed on a first surface onto another surface. The first surface is typically a metal (that dissociates H2) and the second surface is typically the support on which the metal is doped. Hydrogen spillover is a well documented phenomenon in the catalysis literature, and has been known in the catalysis community for over four decades, although it is still not well understood.1, 2 Much evidence has been shown in the literature on its roles played in catalytic reactions. Very little has been studied on hydrogen storage by spillover at ambient temperature. However, it is also known to occur at such temperature, e.g., direct evidence has been shown for spillover on commercial fuel-cell, highly dispersed Pt/C, Ru/C and PtRu/C catalysts by inelastic neutron scattering.3 To exploit spillover for storage, among the key questions are whether spillover is reversible at ambient temperature and if the adsorption (refill) and desorption rates at ambient temperature are …
Date: February 4, 2011
Creator: Yang , Ralph T.
System: The UNT Digital Library
ANALYSIS OF HARRELL MONOSODIUM TITANATE LOT #071311 (open access)

ANALYSIS OF HARRELL MONOSODIUM TITANATE LOT #071311

Monosodium titanate (MST) for use in the Actinide Removal Process (ARP) must be qualified and verified in advance. A single qualification sample for each batch of material is sent to SRNL for analysis, as well as a statistical sampling of verification samples. The Harrell Industries Lot No.071311 qualification and 12 verification samples met all the requirements in the specification indicating the material is acceptable for use in the process.
Date: October 4, 2011
Creator: Taylor-Pashow, K.
System: The UNT Digital Library
The Magnetic Centrifugal Mass Filter (open access)

The Magnetic Centrifugal Mass Filter

Mass filters using rotating plasmas have been considered for separating nuclear waste and spent nuclear fuel. We propose a new mass filter that utilizes centrifugal and magnetic confinement of ions in a way similar to the asymmetric centrifugal trap. This magnetic centrifugal mass filter is shown to be more proliferation resistant than present technology. This filter is collisional and produces well confined output streams, among other advantages. __________________________________________________
Date: August 4, 2011
Creator: Fisch, Abraham J. Fetterman and Nathaniel J.
System: The UNT Digital Library
Transient evolution of a photon gas in the nonlinear QED vacuum (open access)

Transient evolution of a photon gas in the nonlinear QED vacuum

Thermally induced vacuum polarization stemming from QED radiative corrections to the electromagnetic field equations is studied. The physical behavior of thermal radiation, in the nonlinear QED vacuum first described by Heisenberg and Euler, is a problem of some theoretical importance in view of its relation to the cosmic microwave background (CMB), early universe evolution, and Hawking-Unruh radiation. The questions of evolution toward equilibrium, stability, and invariance of thermal radiation under such conditions are of great interest. Our analysis presents novel aspects associated with photon-photon scattering in a photon gas in the framework of quantum kinetic theory. Within the context of the Euler-Heisenberg theory, we show that a homogeneous, isotropic photon gas with arbitrary spectral distribution function evolves toward an equilibrium state with a Bose-Einstein distribution. The transient evolution toward equilibrium of a gas of photons undergoing photon-photon scattering is studied in detail via the Boltzmann transport equation.
Date: October 4, 2011
Creator: Wu, S Q & Hartemann, F V
System: The UNT Digital Library
Compendium of Material Composition Data for Radiation Transport Modeling (open access)

Compendium of Material Composition Data for Radiation Transport Modeling

Introduction Meaningful simulations of radiation transport applications require realistic definitions of material composition and densities. When seeking that information for applications in fields such as homeland security, radiation shielding and protection, and criticality safety, researchers usually encounter a variety of materials for which elemental compositions are not readily available or densities are not defined. Publication of the Compendium of Material Composition Data for Radiation Transport Modeling, Revision 0, in 2006 was the first step toward mitigating this problem. Revision 0 of this document listed 121 materials, selected mostly from the combined personal libraries of staff at the Pacific Northwest National Laboratory (PNNL), and thus had a scope that was recognized at the time to be limited. Nevertheless, its creation did provide a well-referenced source of some unique or hard-to-define material data in a format that could be used directly in radiation transport calculations being performed at PNNL. Moreover, having a single common set of material definitions also helped to standardize at least one aspect of the various modeling efforts across the laboratory by providing separate researchers the ability to compare different model results using a common basis of materials. The authors of the 2006 compendium understood that, depending on its …
Date: March 4, 2011
Creator: McConn, Ronald J.; Gesh, Christopher J.; Pagh, Richard T.; Rucker, Robert A. & Williams III, Robert
System: The UNT Digital Library
Operations & Maintenance Best Practices - A Guide to Achieving Operational Efficiency (Release 3) (open access)

Operations & Maintenance Best Practices - A Guide to Achieving Operational Efficiency (Release 3)

This guide highlights operations and maintenance programs targeting energy and water efficiency that are estimated to save 5% to 20% on energy bills without a significant capital investment. The purpose of this guide is to provide you, the Operations and Maintenance (O&M)/Energy manager and practitioner, with useful information about O&M management, technologies, energy and water efficiency, and cost-reduction approaches. To make this guide useful and to reflect your needs and concerns, the authors met with O&M and Energy managers via Federal Energy Management Program (FEMP) workshops. In addition, the authors conducted extensive literature searches and contacted numerous vendors and industry experts. The information and case studies that appear in this guide resulted from these activities. It needs to be stated at the outset that this guide is designed to provide information on effective O&M as it applies to systems and equipment typically found at Federal facilities. This guide is not designed to provide the reader with step-by-step procedures for performing O&M on any specific piece of equipment. Rather, this guide first directs the user to the manufacturer's specifications and recommendations. In no way should the recommendations in this guide be used in place of manufacturer's recommendations. The recommendations in this …
Date: August 4, 2010
Creator: Sullivan, Greg; Pugh, Ray; Melendez, Aldo P. & Hunt, W. D.
System: The UNT Digital Library
Production of Diesel Engine Turbocharger Turbine from Low Cost Titanium Powder (open access)

Production of Diesel Engine Turbocharger Turbine from Low Cost Titanium Powder

Turbochargers in commercial turbo-diesel engines are multi-material systems where usually the compressor rotor is made of aluminum or titanium based material and the turbine rotor is made of either a nickel based superalloy or titanium, designed to operate under the harsh exhaust gas conditions. The use of cast titanium in the turbine section has been used by Cummins Turbo Technologies since 1997. Having the benefit of a lower mass than the superalloy based turbines; higher turbine speeds in a more compact design can be achieved with titanium. In an effort to improve the cost model, and develop an industrial supply of titanium componentry that is more stable than the traditional aerospace based supply chain, the Contractor has developed component manufacturing schemes that use economical Armstrong titanium and titanium alloy powders and MgR-HDH powders. Those manufacturing schemes can be applied to compressor and turbine rotor components for diesel engine applications with the potential of providing a reliable supply of titanium componentry with a cost and performance advantage over cast titanium.
Date: May 4, 2012
Creator: Muth, T. R. & Mayer, R. (Queen City Forging)
System: The UNT Digital Library
Computational Mechanics Research and Support for Aerodynamics and Hydraulics at Tfhrc, Year 2 Quarter 3 Progress Report (open access)

Computational Mechanics Research and Support for Aerodynamics and Hydraulics at Tfhrc, Year 2 Quarter 3 Progress Report

This report addresses the computational mechanics research and support for aerodynamics and hydraulics at Tfhrc.
Date: October 4, 2012
Creator: Bojanowski, C.; Balcerzak, M.; Kulak, R.; Ley, H. (Energy Systems) & Consultants), (RFK Engineering Mechanics
System: The UNT Digital Library
Methodology for Scaling Fusion Power Plant Availability (open access)

Methodology for Scaling Fusion Power Plant Availability

Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant …
Date: January 4, 2011
Creator: Waganer, Lester M.
System: The UNT Digital Library