LIP: The Livermore Interpolation Package, Version 1.3 (open access)

LIP: The Livermore Interpolation Package, Version 1.3

This report describes LIP, the Livermore Interpolation Package. Because LIP is a stand-alone version of the interpolation package in the Livermore Equation of State (LEOS) access library, the initials LIP alternatively stand for the ''LEOS Interpolation Package''. LIP was totally rewritten from the package described in [1]. In particular, the independent variables are now referred to as x and y, since the package need not be restricted to equation of state data, which uses variables {rho} (density) and T (temperature). LIP is primarily concerned with the interpolation of two-dimensional data on a rectangular mesh. The interpolation methods provided include piecewise bilinear, reduced (12-term) bicubic, and bicubic Hermite (biherm). There is a monotonicity-preserving variant of the latter, known as bimond. For historical reasons, there is also a biquadratic interpolator, but this option is not recommended for general use. A birational method was added at version 1.3. In addition to direct interpolation of two-dimensional data, LIP includes a facility for inverse interpolation (at present, only in the second independent variable). For completeness, however, the package also supports a compatible one-dimensional interpolation capability. Parametric interpolation of points on a two-dimensional curve can be accomplished by treating the components as a pair of one-dimensional …
Date: January 4, 2011
Creator: Fritsch, F N
System: The UNT Digital Library
National Energy Efficiency Evaluation, Measurement and Verification (EM&V) Standard: Scoping Study of Issues and Implementation Requirements (open access)

National Energy Efficiency Evaluation, Measurement and Verification (EM&V) Standard: Scoping Study of Issues and Implementation Requirements

This report is a scoping study that identifies issues associated with developing a national evaluation, measurement and verification (EM&V) standard for end-use, non-transportation, energy efficiency activities. The objectives of this study are to identify the scope of such a standard and define EM&V requirements and issues that will need to be addressed in a standard. To explore these issues, we provide and discuss: (1) a set of definitions applicable to an EM&V standard; (2) a literature review of existing guidelines, standards, and 'initiatives' relating to EM&V standards as well as a review of 'bottom-up' versus 'top-down' evaluation approaches; (3) a summary of EM&V related provisions of two recent federal legislative proposals (Congressman Waxman's and Markey's American Clean Energy and Security Act of 2009 and Senator Bingaman's American Clean Energy Leadership Act of 2009) that include national efficiency resource requirements; (4) an annotated list of issues that that are likely to be central to, and need to be considered when, developing a national EM&V standard; and (5) a discussion of the implications of such issues. There are three primary reasons for developing a national efficiency EM&V standard. First, some policy makers, regulators and practitioners believe that a national standard would streamline …
Date: February 4, 2011
Creator: Schiller Consulting, Inc.; Schiller, Steven R.; Goldman, Charles A. & Galawish, Elsia
System: The UNT Digital Library
Equilibrium and Stability of Partial Toroidal Plasma Discharges (open access)

Equilibrium and Stability of Partial Toroidal Plasma Discharges

The equilibrium and stability of partial toroidal flux ropes are studied in detail in the laboratory, motivated by ubiquitous loop structures on the solar surface. The flux ropes studied here are magnetized arc discharges formed in the Magnetic Reconnection Experiment (MRX). It is found that these loops robustly maintain their equilibrium on time scales much longer than the Alfven time over a wide range of plasma current, guide eld strength, and angle between electrodes, even in the absence of a strapping fi eld. Additionally, the external kink stability of these flux ropes is found to be governed by the Kruskal-Shafranov limit for a flux rope with line-tied boundary conditions at both ends (q > 1).
Date: January 4, 2011
Creator: E. Oz, C. E. Myers, M. Yamada, H. Ji, R. Kulsrud, and J. Xie
System: The UNT Digital Library
Effects of Time, Heat, and Oxygen on K Basin Sludge Agglomeration, Strength, and Solids Volume (open access)

Effects of Time, Heat, and Oxygen on K Basin Sludge Agglomeration, Strength, and Solids Volume

Sludge disposition will be managed in two phases under the K Basin Sludge Treatment Project. The first phase is to retrieve the sludge that currently resides in engineered containers in the K West (KW) Basin pool at ~10 to 18°C. The second phase is to retrieve the sludge from interim storage in the sludge transport and storage containers (STSCs) and treat and package it in preparation for eventual shipment to the Waste Isolation Pilot Plant. The work described in this report was conducted to gain insight into how sludge may change during long-term containerized storage in the STSCs. To accelerate potential physical and chemical changes, the tests were performed at temperatures and oxygen partial pressures significantly greater than those expected in the T Plant canyon cells where the STSCs will be stored. Tests were conducted to determine the effects of 50°C oxygenated water exposure on settled quiescent uraninite (UO2) slurry and a full simulant of KW containerized sludge to determine the effects of oxygen and heat on the composition and mechanical properties of sludge. Shear-strength measurements by vane rheometry also were conducted for UO2 slurry, mixtures of UO2 and metaschoepite (UO3•2H2O), and for simulated KW containerized sludge. The results from …
Date: January 4, 2011
Creator: Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Daniel, Richard C. & Burns, Carolyn A.
System: The UNT Digital Library
Sensible Heat, Direct, Dual-Media Thermal Energy Storagy System: Phase 1 Final Technical Report (open access)

Sensible Heat, Direct, Dual-Media Thermal Energy Storagy System: Phase 1 Final Technical Report

Work under this project has ultimately focused on the development of a modular packed bed based thermal energy storage system. The design assumes the use of standard segments of carbon steel pipe filled with spherical materials creating a packed bed. These materials are assumed to be manufactured in such a way that the spherical shape is uniform throughout the packed bed. Out of 32 candidate materials evaluated, 8 materials remain. Each material meets the Phase I milestones that were specified for this storage system: a round trip efficiency in excess of 93%, and a required volume of packed bed material that does not exceed the volume of molten salt used in a two-tank storage system with equivalent thermal performance.
Date: November 4, 2011
Creator: Newmarker, Marc & Campbell, Mark
System: The UNT Digital Library
Ridge-Valley Graphs: Combinatorial Ridge Detection Using Jacobi Sets (open access)

Ridge-Valley Graphs: Combinatorial Ridge Detection Using Jacobi Sets

None
Date: February 4, 2011
Creator: Norgard, G & Bremer, P T
System: The UNT Digital Library
PHOSPHATE MANAGEMENT: FY2010 RESULTS OF PHOSPHATE PRECIPITATION TESTS (open access)

PHOSPHATE MANAGEMENT: FY2010 RESULTS OF PHOSPHATE PRECIPITATION TESTS

The Phosphate Management program seeks to develop treatment options for caustic phosphate solutions resulting from the caustic leaching of the bismuth phosphate sludge. The SRNL subtask investigated the precipitation of phosphate salts from caustic solutions through addition of fluoride and by crystallization. The scoping tests examined the: precipitation of phosphate by the addition of sodium fluoride to form the sodium fluorophosphate double salt, Na{sub 7}F(PO{sub 4}){sub 2} {center_dot} 19H{sub 2}O, crystallization of phosphate by reducing the temperature of saturated phosphate solutions, and combinations of precipitation and crystallization. A simplified leachate simulant was used in the study produced by dissolving sodium phosphate in 1 M to 3.5 M sodium hydroxide solutions. The results show that all three processes; precipitation with sodium fluoride, crystallization, and combined precipitation/crystallization can be effective for removing large amounts of phosphate from solution. The combined process of precipitation/crystallization showed >90% removal of phosphate at all hydroxide concentrations when cooling a non-saturated phosphate solution from 65 C to 25 C. Based on the measured solubility of sodium phosphate, pH adjustment/caustic addition will also remove large amounts of phosphate from solution (>80%). For all three processes, the phosphate concentration in the caustic solution must be managed to keep the …
Date: April 4, 2011
Creator: Hay, M. & King, W.
System: The UNT Digital Library
Alternative Sodium Recovery Technology—High Hydroxide Leaching: FY10 Status Report (open access)

Alternative Sodium Recovery Technology—High Hydroxide Leaching: FY10 Status Report

Boehmite leaching tests were carried out at NaOH concentrations of 10 M and 12 M, temperatures of 85°C and 60°C, and a range of initial aluminate concentrations. These data, and data obtained during earlier 100°C tests using 1 M and 5 M NaOH, were used to establish the dependence of the boehmite dissolution rate on hydroxide concentration, temperature, and initial aluminate concentration. A semi-empirical kinetic model for boehmite leaching was fitted to the data and used to calculate the NaOH additions required for leaching at different hydroxide concentrations. The optimal NaOH concentration for boehmite leaching at 85°C was estimated, based on minimizing the amount of Na that had to be added in NaOH to produce a given boehmite conversion.
Date: February 4, 2011
Creator: Mahoney, Lenna A.; Neiner, Doinita; Peterson, Reid A.; Rapko, Brian M.; Russell, Renee L. & Schonewill, Philip P.
System: The UNT Digital Library
Hydrogen Storage at Ambient Temperature by the Spillover Mechanism (open access)

Hydrogen Storage at Ambient Temperature by the Spillover Mechanism

The goal of this project was to develop new nanostructured sorbent materials, using the hydrogen spillover mechanism that could meet the DOE 2010 system targets for on-board vehicle hydrogen storage. Hydrogen spillover may be broadly defined as the transport (i.e., via surface diffusion) of dissociated hydrogen adsorbed or formed on a first surface onto another surface. The first surface is typically a metal (that dissociates H2) and the second surface is typically the support on which the metal is doped. Hydrogen spillover is a well documented phenomenon in the catalysis literature, and has been known in the catalysis community for over four decades, although it is still not well understood.1, 2 Much evidence has been shown in the literature on its roles played in catalytic reactions. Very little has been studied on hydrogen storage by spillover at ambient temperature. However, it is also known to occur at such temperature, e.g., direct evidence has been shown for spillover on commercial fuel-cell, highly dispersed Pt/C, Ru/C and PtRu/C catalysts by inelastic neutron scattering.3 To exploit spillover for storage, among the key questions are whether spillover is reversible at ambient temperature and if the adsorption (refill) and desorption rates at ambient temperature are …
Date: February 4, 2011
Creator: Yang , Ralph T.
System: The UNT Digital Library
ANALYSIS OF HARRELL MONOSODIUM TITANATE LOT #071311 (open access)

ANALYSIS OF HARRELL MONOSODIUM TITANATE LOT #071311

Monosodium titanate (MST) for use in the Actinide Removal Process (ARP) must be qualified and verified in advance. A single qualification sample for each batch of material is sent to SRNL for analysis, as well as a statistical sampling of verification samples. The Harrell Industries Lot No.071311 qualification and 12 verification samples met all the requirements in the specification indicating the material is acceptable for use in the process.
Date: October 4, 2011
Creator: Taylor-Pashow, K.
System: The UNT Digital Library
The Magnetic Centrifugal Mass Filter (open access)

The Magnetic Centrifugal Mass Filter

Mass filters using rotating plasmas have been considered for separating nuclear waste and spent nuclear fuel. We propose a new mass filter that utilizes centrifugal and magnetic confinement of ions in a way similar to the asymmetric centrifugal trap. This magnetic centrifugal mass filter is shown to be more proliferation resistant than present technology. This filter is collisional and produces well confined output streams, among other advantages. __________________________________________________
Date: August 4, 2011
Creator: Fisch, Abraham J. Fetterman and Nathaniel J.
System: The UNT Digital Library
Transient evolution of a photon gas in the nonlinear QED vacuum (open access)

Transient evolution of a photon gas in the nonlinear QED vacuum

Thermally induced vacuum polarization stemming from QED radiative corrections to the electromagnetic field equations is studied. The physical behavior of thermal radiation, in the nonlinear QED vacuum first described by Heisenberg and Euler, is a problem of some theoretical importance in view of its relation to the cosmic microwave background (CMB), early universe evolution, and Hawking-Unruh radiation. The questions of evolution toward equilibrium, stability, and invariance of thermal radiation under such conditions are of great interest. Our analysis presents novel aspects associated with photon-photon scattering in a photon gas in the framework of quantum kinetic theory. Within the context of the Euler-Heisenberg theory, we show that a homogeneous, isotropic photon gas with arbitrary spectral distribution function evolves toward an equilibrium state with a Bose-Einstein distribution. The transient evolution toward equilibrium of a gas of photons undergoing photon-photon scattering is studied in detail via the Boltzmann transport equation.
Date: October 4, 2011
Creator: Wu, S Q & Hartemann, F V
System: The UNT Digital Library
Compendium of Material Composition Data for Radiation Transport Modeling (open access)

Compendium of Material Composition Data for Radiation Transport Modeling

Introduction Meaningful simulations of radiation transport applications require realistic definitions of material composition and densities. When seeking that information for applications in fields such as homeland security, radiation shielding and protection, and criticality safety, researchers usually encounter a variety of materials for which elemental compositions are not readily available or densities are not defined. Publication of the Compendium of Material Composition Data for Radiation Transport Modeling, Revision 0, in 2006 was the first step toward mitigating this problem. Revision 0 of this document listed 121 materials, selected mostly from the combined personal libraries of staff at the Pacific Northwest National Laboratory (PNNL), and thus had a scope that was recognized at the time to be limited. Nevertheless, its creation did provide a well-referenced source of some unique or hard-to-define material data in a format that could be used directly in radiation transport calculations being performed at PNNL. Moreover, having a single common set of material definitions also helped to standardize at least one aspect of the various modeling efforts across the laboratory by providing separate researchers the ability to compare different model results using a common basis of materials. The authors of the 2006 compendium understood that, depending on its …
Date: March 4, 2011
Creator: McConn, Ronald J.; Gesh, Christopher J.; Pagh, Richard T.; Rucker, Robert A. & Williams III, Robert
System: The UNT Digital Library
Methodology for Scaling Fusion Power Plant Availability (open access)

Methodology for Scaling Fusion Power Plant Availability

Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant …
Date: January 4, 2011
Creator: Waganer, Lester M.
System: The UNT Digital Library
Hanford External Dosimetry Technical Basis Manual PNL-MA-842 (open access)

Hanford External Dosimetry Technical Basis Manual PNL-MA-842

The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford …
Date: April 4, 2011
Creator: Rathbone, Bruce A.
System: The UNT Digital Library
Fundamental Mechanisms Driving the Amorphous to Crystalline Phase Transformation (open access)

Fundamental Mechanisms Driving the Amorphous to Crystalline Phase Transformation

Phase transformations are ubiquitous, fundamental phenomena that lie at the heart of many structural, optical and electronic properties in condensed matter physics and materials science. Many transformations, especially those occurring under extreme conditions such as rapid changes in the thermodynamic state, are controlled by poorly understood processes involving the nucleation and quenching of metastable phases. Typically these processes occur on time and length scales invisible to most experimental techniques ({micro}s and faster, nm and smaller), so our understanding of the dynamics tends to be very limited and indirect, often relying on simulations combined with experimental study of the ''time infinity'' end state. Experimental techniques that can directly probe phase transformations on their proper time and length scales are therefore key to providing fundamental insights into the whole area of transformation physics and materials science. LLNL possesses a unique dynamic transmission electron microscope (DTEM) capable of taking images and diffraction patterns of laser-driven material processes with resolution measured in nanometers and nanoseconds. The DTEM has previously used time-resolved diffraction patterns to quantitatively study phase transformations that are orders of magnitude too fast for conventional in situ TEM. More recently the microscope has demonstrated the ability to directly image a reaction front …
Date: January 4, 2011
Creator: Reed, B W; Browning, N D; Santala, M K; LaGrange, T; Gilmer, G H; Masiel, D J et al.
System: The UNT Digital Library
Design and Construction of a Gas Jet Target for RIB Experiements (open access)

Design and Construction of a Gas Jet Target for RIB Experiements

PNNL is now part of the JENSA collaboration to produce a gas jet system for the Facility for Rare Isotope Beams (FRIB). This document is a status report for the gas jet working group to be delivered to the FRIB scientific advisory council (SAC). It briefly describes PNNL’s capability at constructing cost efficient and high detection efficiency HPGe arrays.
Date: February 4, 2011
Creator: Greife, Uwe; Chipps, Kelly A.; Smith, Michael; Bardayan, Dan W.; Pain, Steven D.; Schmitt, Kyle et al.
System: The UNT Digital Library
PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS (open access)

PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS

The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this …
Date: January 4, 2011
Creator: Marra, J.; Crawford, C.; Fox, K. & Bibler, N.
System: The UNT Digital Library
DEMONSTRATION OF MIXING AND TRANSFERRING SETTLING COHESIVE SLURRY SIMULANTS IN THE AY-102 TANK (open access)

DEMONSTRATION OF MIXING AND TRANSFERRING SETTLING COHESIVE SLURRY SIMULANTS IN THE AY-102 TANK

In support of Hanford's waste certification and delivery of tank waste to the Waste Treatment and Immobilization Plant (WTP), Savannah River National Laboratory (SRNL) was tasked by the Washington River Protection Solutions (WRPS) to evaluate the effectiveness of mixing and transferring tank waste in a Double Shell Tank (DST) to the WTP Receipt Tank. The work discussed in this report (Phase III) address the impacts cohesive simulants have on mixing and batch transfer performance. The objective of the demonstrations performed in Phase III was to determine the impact that cohesive particle interactions in the simulants have on tank mixing using 1/22{sup nd} scale mixing system and batch transfer of seed particles. This testing is intended to provide supporting evidence to the assumption that Hanford Small Scale Mixing Demonstration (SSMD) testing in water is conservative. The batch transfers were made by pumping the simulants from the Mixing Demonstration Tank (MDT) to six Receipt Tanks (RTs), and the consistency in the amount of seed particles in each batch was compared. Tests were conducted with non-Newtonian cohesive simulants with Bingham yield stress ranging from 0.3 Pa to 7 Pa. Kaolin clay and 100 {mu}m stainless steel seed particles were used for all the …
Date: August 4, 2011
Creator: Adamson, D.
System: The UNT Digital Library
Nevada Test Site-Directed Research and Development FY 2010 Annual Report (open access)

Nevada Test Site-Directed Research and Development FY 2010 Annual Report

This annual report of the Site-Directed Research and Development (SDRD) program represents the highly significant R&D accomplishments conducted during fiscal year 2010. This year was noteworthy historically, as the Nevada Test Site was renamed to the Nevada National Security Site (NNSS). This change not only recognizes how the site's mission has evolved, but also heralds a future of new challenges and opportunities for the NNSS. In many ways, since its inception in 2002, the SDRD program has helped shape that evolving mission. As we approach 2012, SDRD will also mark a milestone, having completed its first full decade of innovative R&D in support of the site and national security. The program continues to fund advanced science and technology development across traditional Department of Energy (DOE) nuclear security areas such as stockpile stewardship and non-proliferation while also supporting Department of Homeland Security (DHS) needs, and specialized work for government agencies like the Department of Defense (DoD) and others. The NNSS will also contribute technologies in the areas of treaty verification and monitoring, two areas of increasing importance to national security. Keyed to the NNSS's broadened scope, the SDRD program will continue to anticipate and advance R&D projects that will help the …
Date: April 4, 2011
Creator: Howard Bender, comp.
System: The UNT Digital Library
Investigation Of A Transient Energetic Charge Exchange Fux Enhancement (ʻspike-on-tailʼ) Observed In Neutral-beam-heated H-mode Discharges In The National Spherical Torus Experiment (open access)

Investigation Of A Transient Energetic Charge Exchange Fux Enhancement (ʻspike-on-tailʼ) Observed In Neutral-beam-heated H-mode Discharges In The National Spherical Torus Experiment

In the National Spherical Torus Experiment (NSTX), a large increase in the charge exchange neutral flux localized at the Neutral Beam (NB) injection full energy is measured by the E||B (superimposed parallel electric and magnetic fields) Neutral Particle Analyzer (NPA). Termed the High-Energy Feature (HEF), it appears on the NB-injected energetic ion spectrum only in discharges where tearing or kink-type modes (f < 50 kHz) are absent, Toroidal Alfvén Eigenmode (TAE) activity (f ~ 50 - 150 kHz) is weak and Global Alfvén Eigenmode (GAE) activity (f ~ 400 – 1000 kHz) is robust. Compressional Alfvén eigenmode (CAE) activity (f > 1000 kHz) is usually sporadic or absent during the HEF event. The HEF exhibits growth times of Δt ~ 20 - 80 ms, durations of ~ 100 – 600 ms and peak-to-base flux ratios up to H = Fmax /Fmin ~ 10. In infrequent cases, a slowing down distribution below the HEF energy can develop that continues to evolve over periods > 100 ms, a time scale long compared with the typical fast ion equilibration times. HEFs are Transient energetic charge exchange flux enhancement (ʻspike-on-tailʼ) 2 observed only in H-mode (not L-mode) discharges with injected power Pb ≥ 4 …
Date: August 4, 2011
Creator: Medley, S. S.
System: The UNT Digital Library
THE SCENARIOS APPROACH TO ATTENUATION-BASED REMEDIES FOR INORGANIC AND RADIONUCLIDE CONTAMINANTS (open access)

THE SCENARIOS APPROACH TO ATTENUATION-BASED REMEDIES FOR INORGANIC AND RADIONUCLIDE CONTAMINANTS

Guidance materials based on use of conceptual model scenarios were developed to assist evaluation and implementation of attenuation-based remedies for groundwater and vadose zones contaminated with inorganic and radionuclide contaminants. The Scenarios approach is intended to complement the comprehensive information provided in the US EPA's Technical Protocol for Monitored Natural Attenuation (MNA) of Inorganic Contaminants by providing additional information on site conceptual models and extending the evaluation to consideration of Enhanced Attenuation approaches. The conceptual models incorporate the notion of reactive facies, defined as units with hydrogeochemical properties that are different from surrounding units and that react with contaminants in distinct ways. The conceptual models also incorporate consideration of biogeochemical gradients, defined as boundaries between different geochemical conditions that have been induced by waste disposal or other natural phenomena. Gradients can change over time when geochemical conditions from one area migrate into another, potentially affecting contaminant mobility. A recognition of gradients allows the attenuation-affecting conditions of a site to be projected into the future. The Scenarios approach provides a stepwise process to identify an appropriate category of conceptual model and refine it for a specific site. Scenario materials provide links to pertinent sections in the EPA technical protocol and present …
Date: August 4, 2011
Creator: Vangelas, K.; Rysz, M.; Truex, M.; Brady, P.; Newell, C. & Denham, M.
System: The UNT Digital Library
Filtration Understanding: FY10 Testing Results and Filtration Model Update (open access)

Filtration Understanding: FY10 Testing Results and Filtration Model Update

This document completes the requirements of Milestone 2-4, Final Report of FY10 Testing, discussed in the scope of work outlined in the EM31 task plan WP-2.3.6-2010-1. The focus of task WP 2.3.6 is to improve the U.S. Department of Energy’s (DOE’s) understanding of filtration operations for high-level waste (HLW) to improve filtration and cleaning efficiencies, thereby increasing process throughput and reducing the Na demand (through acid neutralization). Developing the cleaning/backpulsing requirements will produce much more efficient operations for both the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Savannah River Site (SRS), thereby significantly increasing throughput by limiting cleaning cycles. The scope of this work is to develop the understanding of filter fouling to allow developing this cleaning/backpulsing strategy.
Date: April 4, 2011
Creator: Daniel, Richard C.; Billing, Justin M.; Burns, Carolyn A.; Peterson, Reid A.; Russell, Renee L.; Schonewill, Philip P. et al.
System: The UNT Digital Library
TANK 18 AND 19-F TIER 1A EQUIPMENT FILL MOCK UP TEST SUMMARY (open access)

TANK 18 AND 19-F TIER 1A EQUIPMENT FILL MOCK UP TEST SUMMARY

The United States Department of Energy (US DOE) has determined that Tanks 18-F and 19-F have met the F-Tank Farm (FTF) General Closure Plan Requirements and are ready to be permanently closed. The high-level waste (HLW) tanks have been isolated from FTF facilities. To complete operational closure they will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) discouraging future intrusion, and (4) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. Bulk waste removal and heel removal equipment remain in Tanks 18-F and 19-F. This equipment includes the Advance Design Mixer Pump (ADMP), transfer pumps, transfer jets, standard slurry mixer pumps, equipment-support masts, sampling masts, dip tube assemblies and robotic crawlers. The present Tank 18 and 19-F closure strategy is to grout the equipment in place and eliminate vertical pathways by filling voids in the equipment to vertical fast pathways and water infiltration. The mock-up tests described in this report were intended to address placement issues identified for grouting the equipment that will be left in Tank 18-F and Tank 19-F. The Tank 18-F and 19-F closure strategy …
Date: November 4, 2011
Creator: Stefanko, D. & Langton, C.
System: The UNT Digital Library