Shear and Bending Strength of Cold-Formed Steel Solid Wall Panels Using Corrugated Steel Sheets for Mobile Shelters (open access)

Shear and Bending Strength of Cold-Formed Steel Solid Wall Panels Using Corrugated Steel Sheets for Mobile Shelters

The objective of this thesis is to determine if the single sided resistance spot weld (RSW) can be used as a feasible connection method for cold formed steel (CFS) shear walls subject to lateral force of either seismic or wind loads on mobile shelters. The research consisted of three phases which include: a design as a 3D BIM model, connection tests of the resistance spot weld, and full-scale testing of the designed solid wall panels. The shear wall testing was conducted on specimens with both resistance spot weld and self-drilling screws and the results from tests gave a direct comparison of these connections when the solid wall panel was subjected to in-plane shear forces. The full-scale tests also included 4-point bending tests which was designed to investigate the wall panel's resistance to the lateral loads applied perpendicularly to the surface. The research discovered that the singled sided resistance spot weld achieved similar performance as the self-drilling screws in the applications of CFS wall panels for mobile shelters. The proposed single sided resistance spot weld has advantages of low cost, no added weight, fast fabrication, and it is a feasible connection method for CFS wall panels.
Date: December 2017
Creator: Derrick, Nathan Lynn
System: The UNT Digital Library
Shear and Compression Strength of Cold-formed Steel Clip Angles Subjected to Different Screw Patterns (open access)

Shear and Compression Strength of Cold-formed Steel Clip Angles Subjected to Different Screw Patterns

This thesis presents experiments and numerical analysis of the cold-formed steel clip angle in three different limit states which are shear, compression, and combination of the screw connection. A previous cold-formed steel clip angle test program (which is Phase 1) developed design methods for clip angle. Therefore, the object of this thesis is to further investigate the behavior and design methods of loading-bearing cold-formed steel clip angles under different screw pattern. For each limit state, a test program was conducted to investigate the behavior, strength, and deflection of the clip angle. The test result were compared with previous CFS clip angle design method. Amending existing CFS clip angle method were developed by each of the four limit states studied in this project.
Date: December 2017
Creator: Yan, Zhishan
System: The UNT Digital Library

Development of a Coaxiality Indicator

Access: Use of this item is restricted to the UNT Community
The geometric dimensioning and tolerancing concept of coaxiality is often required by design engineers for balance of rotating parts and precision mating parts. In current practice, it is difficult for manufacturers to measure coaxiality quickly and inexpensively. This study examines feasibility of a manually-operated, mechanical device combined with formulae to indicate coaxiality of a test specimen. The author designs, fabricates, and tests the system for measuring coaxiality of holes machined in a steel test piece. Gage Repeatability and Reproducibility (gage R&R) and univariate analysis of variance is performed in accordance with Measurement System Analysis published by AIAG. Results indicate significant design flaws exist in the current configuration of the device; observed values vary greatly with operator technique. Suggestions for device improvements conclude the research.
Date: December 1999
Creator: Arendsee, Wayne C.
System: The UNT Digital Library
Effects of a Surface Engineered Metallic Coating on Elastomeric Valve Stem Seal Leakage (open access)

Effects of a Surface Engineered Metallic Coating on Elastomeric Valve Stem Seal Leakage

Valve stem seal leakage is a major source of fugitive emissions, and controlling these emissions can result in added expense in leak detection and repair programs. Elastomeric O-rings can be used as valve stem seals, and O-ring manufacturers recommend lubrication of elastomeric seals to prevent damage and to assure proper sealing. In this research, a metallic coating was applied as a lubricant using a vacuum vapor deposition process to the surface of elastomeric valve stem seals. Valve stem leak measurements were taken to determine if the coated O-rings, alone or with the recommended lubrication, reduced valve stem seal leakage. This research determined that the metallic coating did not reduce valve stem leakage.
Date: December 2000
Creator: Taylor, John Abner
System: The UNT Digital Library

Effect of Engineered Surfaces on Valve Performance

Access: Use of this item is restricted to the UNT Community
Performance of air operated valves is a major maintenance concern in process industries. Anecdotal information indicates that reliability of some high maintenance valves has been improved by using an ion deposition process to achieve engineered surfaces on selected components. This project compared friction for various surface treatments of selected valve components. Results indicate valve performance may be slightly more consistent when an engineered surface is applied in the valve packing area; however surface treatment in this area does not appear to have a dominant affect on reducing valve friction. Results indicate a linear relation between stem friction and torque applied to packing flange nuts, and even after a valve is in service, controlled packing adjustments can be made without significantly changing valve stroke time.
Date: December 2000
Creator: Pope, Larry G.
System: The UNT Digital Library
Fracture Toughness Testing of Plastics under Various Environmental Conditions (open access)

Fracture Toughness Testing of Plastics under Various Environmental Conditions

The primary objective of this study is to test the applicability to plastics of a fracture toughness testing tool developed for metals. The intent is to study pre-test conditioning of several plastic materials and the effect of the depth of the razor notch cut in the chevron notched fracture toughness test specimens. The study includes the careful preparation of samples followed by conditioning in various environments. Samples were subjected to laboratory air for a specific duration or to a controlled temperature-humidity condition as per the ASTM D1870. Some of the samples were subjected to vacuum conditioning under standard test specifications. Testing was conducted using the conventional three-point bend test as per ASTM D5045-95. ASTM E1304, which sets a standard for short rod and bar testing of metals and ceramics provides some basis for conducting chevron notched four-point bend tests to duplicate the toughness tool. Correlation of these results with the ASTM test samples is determined. The four-point bend test involves less specimen machining as well as time to perform the fracture toughness tests. This study of fracture toughness testing has potential for quality control as well as the fracture property determination.
Date: December 1997
Creator: Velpuri, Seshagirirao V.
System: The UNT Digital Library
Investigation of the feasibility of non-invasive carbon dioxide detection using spectroscopy in the visible spectrum. (open access)

Investigation of the feasibility of non-invasive carbon dioxide detection using spectroscopy in the visible spectrum.

Pulse oximeters are used in operating rooms and recovery rooms as a monitoring device for oxygen in the respiratory system of the patient. The advantage of pulse oximeters over other methods of oxygen monitoring is that they are easy to use and they are non-invasive, which means it is not necessary break the skin to extract blood for information to be obtained. The standard for the measurement of partial pressure of CO2 and O2 is an arterial blood gas analysis (ABG). However routine monitoring using this method on a continuous basis is impractical since it is slow, painful and invasive. Measuring carbon dioxide is critical to preventing ailments such as carbon dioxide poisoning or hypoxia. The problem is, currently there is no known effective non-invasive method for accurately measuring carbon dioxide in the body to properly assess the adequacy of ventilation. The objective of this study was to experimentally use spectroscopy in the visible spectrum and the principles of operation of a pulse oximeter to incorporate a method of non-invasive real-time carbon dioxide monitoring that is as quick and easy to use.
Date: December 2007
Creator: Marks, Damian
System: The UNT Digital Library
Cost Savings Realized Through Proper Sizing of an Excessive Instrument Air System. (open access)

Cost Savings Realized Through Proper Sizing of an Excessive Instrument Air System.

The purpose of this research was to determine if installing a smaller air compressor could reduce the electrical usage of a large semiconductor manufacturing plant. A 200 horsepower Atlas Copco compressor was installed with the existing 500 horsepower Ingersoll-Rand compressors. Testing was conducted during the regular manufacturing process at MEMC Southwest in Sherman, Texas. Analysis of the data found that installing the new compressor could reduce electrical consumption. The study also found there are specific operational setpoints that allow the compressor to operate more efficiently.
Date: December 2003
Creator: Condron, Ewell D.
System: The UNT Digital Library
Effect of Amines as Corrosion Inhibitors for a Low Carbon Steel in Power Industry (open access)

Effect of Amines as Corrosion Inhibitors for a Low Carbon Steel in Power Industry

Commonly used amines in power industry, including morpholine, DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), and DMA (dimethylallylamine) were evaluated for their effect on AISI 1018 steel at 250oF. Samples were exposed to an autoclave containing amine added aqueous solution at pH of 9.5 for 1, 2, 4, 6, 8, and 12 hours. Morphology studies were carried using scanning electron microscope (SEM), phase analysis was done utilizing Fourier transform infrared spectroscopy (FTIR), and weight loss was performed to assess kinetics of oxidation. Control samples showed the highest metal dissolution rate. DBU showed the best performance in metal protection and SEM indicated the presence of a free-crack layer formed by fine particles in that set. FTIR showed that DBU apparently favored the formation of magnetite. It is believed that fine particles impede intrusion of aggressive ions into the metal surface by forming a barrier layer. FTIR demonstrated that DMA formed more oxyhydroxides, whereas morpholine presented magnetite to hematite transformation as early as 2 hours. SEM revealed that control and DMA produced acicular particles characteristic of oxyhydroxides while morpholine and DBU presented more equiaxed particles.
Date: December 2004
Creator: Díaz, Jorge G.
System: The UNT Digital Library
Computer Virus Spread Containment Using Feedback Control. (open access)

Computer Virus Spread Containment Using Feedback Control.

In this research, a security architecture based on the feedback control theory has been proposed. The first loop has been designed, developed and tested. The architecture proposes a feedback model with many controllers located at different stages of network. The controller at each stage gives feedback to the one at higher level and a decision about network security is taken. The first loop implemented in this thesis detects one important anomaly of virus attack, rate of outgoing connection. Though there are other anomalies of a virus attack, rate of outgoing connection is an important one to contain the spread. Based on the feedback model, this symptom is fed back and a state model using queuing theory is developed to delay the connections and slow down the rate of outgoing connections. Upon implementation of this model, whenever an infected machine tries to make connections at a speed not considered safe, the controller kicks in and sends those connections to a delay queue. Because of delaying connections, rate of outgoing connections decrease. Also because of delaying, many connections timeout and get dropped, reducing the spread. PID controller is implemented to decide the number of connections going to safe or suspected queue. Multiple …
Date: December 2004
Creator: Yelimeli Guruprasad, Arun
System: The UNT Digital Library

Development of a Hybrid Molecular Ultraviolet Photodetector based on Guanosine Derivatives

Access: Use of this item is restricted to the UNT Community
Modern studies on charge transfer reaction and conductivity measurements of DNA have shown that the electrical behavior of DNA ranges from that of an insulator to that of a wide bandgap semiconductor. Based on this property of DNA, a metal-semiconductor-metal photodetector is fabricated using a self-assembled layer of deoxyguanosine derivative (DNA base) deposited between gold electrodes. The electrodes are lithographically designed on a GaN substrate separated by a distance L (50nm < L < 100nm). This work examines the electrical and optical properties of such wide-bandgap semiconductor based biomaterial systems for their potential application as photodetectors in the UV region wherein most of the biological agents emit. The objective of this study was to develop a biomolecular electronic device and design an experimental setup for electrical and optical characterization of a novel hybrid molecular optoelectronic material system. AFM results proved the usage of Ga-Polar substrate in conjugation with DG molecules to be used as a potential electronic based sensor. A two-terminal nanoscale biomolectronic diode has been fabricated showing efficient rectification ratio. A nanoscale integrated ultraviolet photodetector (of dimensions less than 100 nm) has been fabricated with a cut-off wavelength at ~ 320 nm.
Date: December 2005
Creator: Liddar, Harsheetal
System: The UNT Digital Library

Surface Plasmon Based Nanophotonic Optical Emitters

Access: Use of this item is restricted to the UNT Community
Group- III nitride based semiconductors have emerged as the leading material for short wavelength optoelectronic devices. The InGaN alloy system forms a continuous and direct bandgap semiconductor spanning ultraviolet (UV) to blue/green wavelengths. An ideal and highly efficient light-emitting device can be designed by enhancing the spontaneous emission rate. This thesis deals with the design and fabrication of a visible light-emitting device using GaN/InGaN single quantum well (SQW) system with enhanced spontaneous emission. To increase the emission efficiency, layers of different metals, usually noble metals like silver, gold and aluminum are deposited on GaN/InGaN SQWs using metal evaporator. Surface characterization of metal-coated GaN/InGaN SQW samples was carried out using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Photoluminescence is used as a tool for optical characterization to study the enhancement in the light emitting structures. This thesis also compares characteristics of different metals on GaN/InGaN SQW system thus allowing selection of the most appropriate material for a particular application. It was found out that photons from the light emitter couple more to the surface plasmons if the bandgap of former is close to the surface plasmon resonant energy of particular metal. Absorption of light due to gold reduces the …
Date: December 2005
Creator: Vemuri, Padma Rekha
System: The UNT Digital Library

Evaluation of dynamic and static electrical characteristics for the DY8 and YI8 process gallium diodes in comparison to the DI8 process boron diodes.

Access: Use of this item is restricted to the UNT Community
A rectifier is an electrical device, comprising one or more semiconductor devices arranged for converting alternating current to direct current by blocking the negative or positive portion of the waveform. The purpose of this study would be to evaluate dynamic and static electrical characteristics of rectifier chips fabricated with (a) DY8 process and (b) YI8 process and compare them with the existing DI8 process rectifiers. These new rectifiers were tested to compare their performance to meet or exceed requirements of lower forward voltages, leakage currents, reverse recovery time, and greater sustainability at higher temperatures compared to diodes manufactured using boron as base (DI8 process diodes) for similar input variables.
Date: December 2006
Creator: Dhoopati, Swathi
System: The UNT Digital Library
Radio frequency propagation differences through various transmissive materials. (open access)

Radio frequency propagation differences through various transmissive materials.

The purpose of this research was to determine which of the commonly used wireless telecommunication site concealment materials has the least effect on signal potency. The tested materials were Tuff Span® fiberglass panels manufactured by Enduro Composite Systems, Lexan® XL-1 polycarbonate plastic manufactured by GE Corporation and Styrofoam™ polystyrene board manufactured by The Dow Chemical Company. Testing was conducted in a double electrically isolated copper mesh screen room at the University of North Texas Engineering Technology Building in Denton, Texas. Analysis of the data found no differences exist between the radio frequency transmissiveness of these products at broadband personal communication service frequencies. However, differences in the signal do exist with regards to the angle of incidence between the material and the transmitting antenna.
Date: December 2002
Creator: Ryan, Patrick L.
System: The UNT Digital Library
Study of the Corrosion Resistance of 316L Stainless Steel Made by Directed Energy Deposition for Applications at an Elevated Temperature (open access)

Study of the Corrosion Resistance of 316L Stainless Steel Made by Directed Energy Deposition for Applications at an Elevated Temperature

The corrosion resistance under elevated temperature of additively manufactured 316L stainless steel made by directed energy deposition was studied. Test samples were prepared in a hybrid additive manufacturing machine using standard deposition parameters recommended by the manufacturer. Control samples were cut from wrought material to compare the results. The test was performed under a corrosive atmosphere with a solution of water with 3.5 % in weight of salt (NaCl). The total duration of the test was 635 hours, divided in five stages of 12, 24, 48, 226, and 325 hours to analyze the samples between each stage. The samples were analyzed quantitatively measuring weight loss and surface topography, and qualitatively by macroscopic inspection with digital photography, and microscopic inspection with optical and scanning electron microscopy. The results show a higher corrosion rate for the additively manufactured samples compared to the control samples. An evident increase in the size of pits initially present on the samples was observed and quantified on the additively manufactured. Although the additively manufactured samples were more aggressively attacked by corrosion, they still presented a shiny surface finish at the end of the test, reinforcing the idea of the formation of a passive oxide layer and suggesting …
Date: December 2021
Creator: Canales Cantu, Alberto Alejandro
System: The UNT Digital Library
Susceptibility of a digital turbine control system to IEEE 802.11 compliant emissions. (open access)

Susceptibility of a digital turbine control system to IEEE 802.11 compliant emissions.

Within the nuclear industry, there have been numerous instances of radio transmissions interfering with sensitive plant equipment. Instances documented vary from minor instrument fluctuations to major plant transients including reactor trips. With the nuclear power industry moving toward digital technologies for control and reactor protection systems, concern exists regarding their potential susceptibility to contemporary wireless telecommunications technologies. This study evaluates the susceptibility of Comanche Peak's planned turbine controls upgrade to IEEE 802.11 compliant wireless radio emissions. The study includes a review of previous research, industry emissions standards, and technical overview of the various IEEE 802.11 protocols and details the testing methodology utilized to evaluate the digital control system. The results of this study concluded that the subject digital control system was unaffected by IEEE 802.11 compliant emissions even when the transmitter was in direct contact with sensitive components.
Date: December 2003
Creator: Carter, Clinton E.
System: The UNT Digital Library
Indoor Propagation Modeling at 2.4 GHz for IEEE 802.11 Networks (open access)

Indoor Propagation Modeling at 2.4 GHz for IEEE 802.11 Networks

Indoor use of wireless systems poses one of the biggest design challenges. It is difficult to predict the propagation of a radio frequency wave in an indoor environment. To assist in deploying the above systems, characterization of the indoor radio propagation channel is essential. The contributions of this work are two-folds. First, in order to build a model, extensive field strength measurements are carried out inside two different buildings. Then, path loss exponents from log-distance path loss model and standard deviations from log-normal shadowing, which statistically describe the path loss models for a different transmitter receiver separations and scenarios, are determined. The purpose of this study is to characterize the indoor channel for 802.11 wireless local area networks at 2.4 GHz frequency. This thesis presents a channel model based on measurements conducted in commonly found scenarios in buildings. These scenarios include closed corridor, open corridor, classroom, and computer lab. Path loss equations are determined using log-distance path loss model and log-normal shadowing. The chi-square test statistic values for each access point are calculated to prove that the observed fading is a normal distribution at 5% significance level. Finally, the propagation models from the two buildings are compared to validate the …
Date: December 2005
Creator: Tummala, Dinesh
System: The UNT Digital Library

Construction Management Methods and Techniques in Army Tactical Shelter

Access: Use of this item is restricted to the UNT Community
This thesis presents a research effort aimed at developing using construction methods and techniques in army tactical shelter. The beginning step focuses on developing and identifying different activities and work breakdown structure applicable in shelter prototype. The next step focuses on identifying resource allocation. This include allocate resources based on the delivered project as per alternative one and for the second alternative as optimization, resource allocation modified and tried to level and minimize resource peak. In addition, the cost calculated for the whole project as well as for each WBS and activities which consider as alternative one and in the second alternative, cost mitigation applied according to available resources and adjusting predecessors and successors of each activity. In conclusion, two alternatives compared, available outcome presents, and future work suggested for the project team to continue this effort.
Date: December 2019
Creator: Yeganehtalab, Babak
System: The UNT Digital Library
Fabrication and Testing of Biomimetic Microstructures for Walkway Tribometers (open access)

Fabrication and Testing of Biomimetic Microstructures for Walkway Tribometers

The main objective of this work is to give contribution in both additive manufacturing (AM) and tribometry derived from the application and study of materials available with the use of biomimetic designs. Additional contributions are determining what effects treatments for flooring surfaces may have on the dynamic coefficient of friction and the effects of these products on common surfaces. The validity of the proposed methodology for a proof of concept was demonstrated by comparing measured dynamic coefficient of friction for designs using standardized equipment and comparing these values to plantar skin tested using an accepted and standardized testing method that has been extensively researched and validated. Initial biomimetic designs and characteristics unique to each design were researched and compared. Eleven designs were selected to be fabricated, tested, and compared to select the most desirable applications for further investigation. Research into potential treatments commercially available for use was done to determine the efficacy of these products. Prototype sensor designs were selected and fabricated using direct light processing (DLP) technology. Examination of the measured values was done through an analysis of the variances in the response variable and comparisons using Fisher and Tukey pairwise comparison method. Future work recommendations are provided for …
Date: December 2019
Creator: Haney, Christopher Willard
System: The UNT Digital Library

Design Method of Cold-Formed Steel Framed Shear Wall Sheathed by Structural Concrete Panel

Access: Use of this item is restricted to the UNT Community
The objective of this research is developing a new method of design for cold-formed steel framed shear wall sheathed by ¾" thick USG structural panel concrete subfloor using a predictive analytical model and comparing the results obtained from the model with those achieved from real testing to verify the analytical model and predicted lateral load-carrying capacity resulted from that. Moreover, investigating the impact of various screw spacings on shear wall design parameter such as ultimate strength, yield strength, elastic stiffness, ductility ratio and amount of energy dissipation is another purpose of this research.
Date: December 2019
Creator: Ashkanalam, Aida
System: The UNT Digital Library
Microfluidic-Based Fabrication of Photonic Microlasers for Biomedical Applications (open access)

Microfluidic-Based Fabrication of Photonic Microlasers for Biomedical Applications

Optical microlasers have been used in different engineering fields and for sensing various applications. They have been used in biomedical fields in applications such as for detecting protein biomarkers for cancer and for measuring biomechanical properties. The goal of this work is to propose a microfluidic-based fabrication method for fabricating optical polymer based microlasers, which has advantages, over current methods, such us the fabrication time, the contained cost, and the reproducibility of the microlaser's size. The microfluidic setup consisted of microfluidic pumps and a flow focusing droplet generator chip made of polydimethylsiloxane (PDMS). Parameters such as the flow rate (Q) and the pressure (P) of both continuous and dispersed phases are taken into account for determining the microlaser's size and a MATLAB imaging tool is used to reduce the microlaser's diameter estimation. In addition, two applications are discussed: i) electric field measurements via resonator doped with Di-Anepps-4 voltage sensitive dye, and ii) strain measurements in a 3D printed bone-like structure to mimic biomedical implantable sensors.
Date: December 2019
Creator: Cavazos, Omar
System: The UNT Digital Library