Month

Novel Approaches for Enhancing Resistance to Fusarium graminearum in Arabidopsis and Wheat by Targeting Defense and Pathogenicity Factors

Fusarium head blight (FHB) is an important disease of small grain cereals including wheat that affects grain quality and yield. The fungus Fusarium graminearum (Fg) is the major agent of this disease. Lack of natural resistance has limited ability to control wheat losses to this disease. Developing new approaches is critical for increasing host plant resistance to this fungus. This work has identified four processes that can be targeted for enhancing host plant resistance to FHB. The first involves targeting the pattern-triggered immunity mechanism to promote host plant resistance. Two other approaches involved reducing activity of susceptibility factors in the host to enhance plant resistance. The susceptibility factors targeted include accumulation of the phytohormone jasmonic acid and the 9-lipoxygenase pathway that oxidizes fatty acids. Besides suppressing host defenses against Fg, jasmonic acid also directly acts on the fungus to promote fungal growth. 9- lipoxygenases similarly suppress host defenses to promote fungal pathogenicity. Another approach that was developed involved having the plant express double stranded RNA to target fungal virulence genes for silencing. This host-induced gene silencing approach was employed to target two fungal virulence genes, the lipase encoding FGL1 and salicylate hydroxylase encoding FgNahG, which the fungus secretes into the …
Date: May 2020
Creator: Alam, Syeda Tamanna
System: The UNT Digital Library

Role of Arabidopsis thaliana WRKY45 in Response to Green Peach Aphid Infestation, Drought, and Salinity Stresses

This study shows that Arabidopsis thaliana WRKY45 gene has an important role in limiting green peach aphid (GPA; Myzus persicae Sülzer) infestation. WRKY45 belongs to the WRKY family of transcription factors, which is one of the largest transcription factor family in plants. In response to GPA infestation, expression of WRKY45 was systemically upregulated in leaves and roots, with highest expression in the vascular tissues, which are the site of aphid feeding. GPA colonization was better on the wrky45 mutant compared to the wild-type (WT) plant. In contrast, GPA poorly colonized plants that were overexpressing (OE) WRKY45, thus confirming an important role for WRKY45 in plant defense to the GPA. A WRKY45-dependent process adversely impacted the reproductive rate of GPA and feeding from the sieve elements. RNA-seq experiments indicated a major impact of WRKY45 overexpression on expression of genes associated with dehydration and abscisic acid biosynthesis and signaling. In agreement with the RNA-seq data, ABA content was also higher in WRKY45-OE plants. However, genetic studies with an ABA-insensitive mutant (abi2-2) indicates that the WRKY45-OE conferred resistance to GPA is mediated through an ABA-independent mechanism. WRKY45-OE plants showed enhanced tolerance to drought and salt stresses. Genetic studies indicate that ABA signaling is …
Date: May 2020
Creator: Patel, Monika A
System: The UNT Digital Library
A Genetic Approach to Identify Proteins that Interact with Eukaryotic Microtubule Severing Proteins via a Yeast Two Hybrid System (open access)

A Genetic Approach to Identify Proteins that Interact with Eukaryotic Microtubule Severing Proteins via a Yeast Two Hybrid System

Microtubules (MT) are regulated by multiple categories of proteins, including proteins responsible for severing MTs that are therefore called MT-severing proteins. Studies of katanin, spastin, and fidgetin in animal systems have clarified that these proteins are MT-severing. However, studies in plants have been limited to katanin p60, and little is known about spastin or fidgetin and their function in plants. I looked at plant genomes to identify MT-severing protein homologues to clarify which severing proteins exist in plants. I obtained data from a variety of eukaryotic species to look for MT-severing proteins using homology to human proteins and analyzed these protein sequences to obtain information on the evolution of MT-severing proteins in different species. I focused this analysis on MT-severing proteins in the maize and Arabidopsis thaliana genomes. I created evolutionary phylogenetic trees for katanin-p60, katanin-p80, spastin, and fidgetin using sequences from animal, plant, and fungal genomes. I focused on Arabidopsis spastin and worked to understand its functionality by identifying protein interaction partners. The yeast two-hybrid technique was used to screen an Arabidopsis cDNA library to identify putative spastin interactors. I sought to confirm the putative protein interactions by using molecular tools for protein localization such as the YFP system. …
Date: May 2020
Creator: Alhassan, Hassan H
System: The UNT Digital Library