Phylogenetic and Functional Characterization of Cotton (Gossypium hirsutum) CENTRORADIALIS/TERMINAL FLOWER1/SELF-PRUNING Genes (open access)

Phylogenetic and Functional Characterization of Cotton (Gossypium hirsutum) CENTRORADIALIS/TERMINAL FLOWER1/SELF-PRUNING Genes

Plant architecture is an important agronomic trait driven by meristematic activities. Indeterminate meristems set repeating phytomers while determinate meristems produce terminal structures. The centroradialis/terminal flower1/self pruning (CETS) gene family modulates architecture by controlling determinate and indeterminate growth. Cotton (G. hirsutum) is naturally a photoperiodic perennial cultivated as a day-neutral annual. Management of this fiber crop is complicated by continued vegetative growth and asynchronous fruit set. Here, cotton CETS genes are phylogenetically and functionally characterized. We identified eight CETS genes in diploid cotton (G. raimondii and G. arboreum) and sixteen in tetraploid G. hirsutum that grouped within the three generally accepted CETS clades: flowering locus T (FT)-like, terminal flower1/self pruning (TFL1/SP)-like, and mother of FT and TFL1 (MFT)-like. Over-expression of single flower truss (GhSFT), the ortholog to Arabidopsis FT, accelerates the onset of flowering in Arabidopsis Col-0. In mutant rescue analysis, this gene driven by its native promoter rescues the ft-10 late flowering phenotype. GhSFT upstream sequence was used to drive expression of the uidA reporter gene. As anticipated, GUS accumulated in the vasculature of Arabidopsis leaves. Cotton has five TFL1-like genes, all of which delay flowering when ectopically expressed in Arabidopsis; the strongest phenotypes fail to produce functional flowers. Three …
Date: December 2017
Creator: Prewitt, Sarah F.
System: The UNT Digital Library
Stability of Myosin Subfragment-2 Modulates the Force Produced by Acto-Myosin Interaction of Striated Muscle (open access)

Stability of Myosin Subfragment-2 Modulates the Force Produced by Acto-Myosin Interaction of Striated Muscle

Myosin subfragment-2 (S2) is a coiled coil linker between myosin subfragment-1 and light meromyosin (LMM). This dissertation examines whether the myosin S2 coiled coil could regulate the amount of myosin S1 heads available to bind actin thin filaments by modulating the stability of its coiled coil. A stable myosin S2 coiled coil would have less active myosin S1 heads compared to a more flexible myosin S2 coiled coil, thus causing increased force production through acto-myosin interaction. The stability of the myosin S2 coiled coil was modulated by the binding of a natural myosin S2 binding protein, myosin binding protein C (MyBPC), and synthetic myosin S2 binding proteins, stabilizer and destabilizer peptide, to myosin S2. Competitive enzyme linked immunosorbent assay (cELISA) experiments revealed the cross specificity and high binding affinity of the synthetic peptides to the myosin S2 of human cardiac and rabbit skeletal origins. Gravitational force spectroscopy (GFS) was performed to test the stability of myosin S2 coiled coil in the presence of these myosin S2 binding proteins. GFS experiments demonstrated the stabilization of the myosin S2 coiled coil by the binding of MyBPC and stabilizer peptide to myosin S2, while the binding of destabilizer peptide to the same resulted …
Date: December 2017
Creator: Singh, Rohit Rajendraprasad
System: The UNT Digital Library
Identification of Hox Genes Controlling Thrombopoiesis in Zebrafish (open access)

Identification of Hox Genes Controlling Thrombopoiesis in Zebrafish

Thrombocytes are functional equivalents of mammalian platelets and also possess megakaryocyte features. It has been shown earlier that hox genes play a role in megakaryocyte development. Our earlier microarray analysis showed five hox genes, hoxa10b, hoxb2a, hoxc5a, hoxc11b and hoxd3a, were upregulated in zebrafish thrombocytes. However, there is no comprehensive study of genome wide scan of all the hox genes playing a role in megakaryopoiesis. I first measured the expression levels of each of these hox genes in young and mature thrombocytes and observed that all the above hox genes except hoxc11b were expressed equally in both populations of thrombocytes. hoxc11b was expressed only in young thrombocytes and not in mature thrombocytes. The goals of my study were to comprehensively knockdown hox genes and identify the specific hox genes involved in the development of thrombocytes in zebrafish. However, the existing vivo-morpholino knockdown technology was not capable of performing such genome-wide knockdowns. Therefore, I developed a novel cost- effective knockdown method by designing an antisense oligonucleotides against the target mRNA and piggybacking with standard control morpholino to silence the gene of interest. Also, to perform knockdowns of the hox genes and test for the number of thrombocytes, the available techniques were …
Date: December 2015
Creator: Sundaramoorthi, Hemalatha
System: The UNT Digital Library
Identification of Genes Involved in Flocculation by Whole Genome Sequencing of Thauera aminoaromatica Strain MZ1T Floc-defective Mutants (open access)

Identification of Genes Involved in Flocculation by Whole Genome Sequencing of Thauera aminoaromatica Strain MZ1T Floc-defective Mutants

Thauera aminoaromatica MZ1T, a floc-forming bacterium isolated from an industrial activated sludge wastewater treatment plant, overproduces exopolysaccharide (EPS) leading to viscous bulking. This phenomenon results in poor sludge settling and dewatering during the clarification process. To identify genes responsible for bacterial flocculation, a whole genome phenotypic sequencing technique was applied. Genomic DNA of MZ1T flocculation-deficient mutants were subjected to massively parallel sequencing. The resultant high-quality reads were assembled and compared to the reference genome of the wild type genome. We identified nine nonsynonymous mutations and one nonsense mutation putatively involved in EPS biosynthesis. Complementation of the nonsense mutation located in an EPS deacetylase gene restored the flocculating phenotype. The FTIR spectra of EPS isolated from the wild-type showed reduced C=O peak of the N-acetyl group at 1665 cm-1 as compared to the spectra of MZ1T floc-deficient mutant EPS, suggesting that the WT EPS was partially deacetylated. Gene expression analysis also demonstrated the deacetylase gene transcript increased before flocculation occurred. The results suggest that the deacetylation of MZ1T EPS is crucial for flocculation. The information obtained from this study will be useful for preventing viscous bulking and wastewater treatment system failure, and may have potential applications in the biotechnology sector for …
Date: December 2015
Creator: Prombutara, Pinidphon
System: The UNT Digital Library
Isolation and Genomic Characterization of 45 Novel Bacteriophages Infecting the Soil Bacterium Streptomyces griseus (open access)

Isolation and Genomic Characterization of 45 Novel Bacteriophages Infecting the Soil Bacterium Streptomyces griseus

Bacteriophages, or simply "phages," are the most abundant biological entities on the planet and are thought to be the largest untapped reservoir of available genetic information. They are also important contributors to both soil health and nutrient recycling and have significantly influenced our current understanding of molecular biology. Bacteria in the genus Streptomyces are also known to be important contributors to soil health, as well as producing a number of useful antibiotics. The genetic diversity of large (> 30) groups of other actinobacteriophages, i.e. phages infecting a few close relatives of the Streptomycetes, has been explored, but this is the first formal effort for Streptomyces-infecting phages. Described here are a group of 45 phages, isolated from soil using a single Streptomycete host, Streptomyces griseus ATCC 10137. All 45 phages are tailed phages with double-stranded DNA. Siphoviruses predominate, six of the phages are podoviruses, and no myoviruses were observed. Notably present are seven phages with prolate icosahedral capsids. Genome lengths and genome termini vary considerably, and the distributions of each are in line with findings among other groups of studied actinobacteriophages. Interestingly, the average G+C among the 45 phages is around 11% lower than that of the isolation host, a larger …
Date: December 2018
Creator: Hale, Richard
System: The UNT Digital Library
Role of 5.8S rRNA in Zebrafish and Human Blood Coagulation (open access)

Role of 5.8S rRNA in Zebrafish and Human Blood Coagulation

Hemolytic disorders are characterized by hemolysis and are prone to thrombosis. Previously, it has been shown that the RNA released from damaged blood cells activates clotting. However, the nature of RNA released from hemolysis is still elusive. We found that after hemolysis, the red blood cells from both zebrafish and humans release 5.8S rRNA. This RNA activated coagulation in zebrafish and human plasmas. Using both natural and synthetic 5.8S rRNA and its synthetic truncated fragments, we found that the 3'-end 26 nucleotide-long RNA (3'-26 RNA) and its stem-loop secondary structure were necessary and sufficient for clotting activity. Corn trypsin inhibitor (CTI), a coagulation factor XII (FXII) inhibitor blocked 3'-26 RNA-mediated coagulation activation of both zebrafish and human plasma. CTI also inhibited zebrafish coagulation in vivo. 5.8S rRNA monoclonal antibody inhibited both 5.8S rRNA- and 3'-26 RNA-mediated zebrafish coagulation activity. Both 5.8S rRNA and 3'-26 RNA activates normal human plasma but did not activate FXII-deficient human plasma. Taken together, these results suggested that the activation of zebrafish plasma is via FXII-like protein. Since zebrafish has no FXII and hepatocyte growth factor activator (Hgfac) has sequence similarities to FXII, we knocked down the hgfac in adult zebrafish. We found that plasma from …
Date: December 2020
Creator: Alharbi, Abdulmajeed Haya M.
System: The UNT Digital Library
Identification and Characterization of a Mutation Causing Stunted Growth in Arabidopsis that is Linked to Phosphate Perception (open access)

Identification and Characterization of a Mutation Causing Stunted Growth in Arabidopsis that is Linked to Phosphate Perception

Plant yield is an agronomic trait dependent on the transport of photosynthate from mature source leaves to sink tissues. Manipulating phloem transport may lead to increased yield, however in a previous study, Arabidopsis thaliana overexpressing sucrose transporter AtSUC2 in the phloem resulted in stunted growth and an apparent P-deficiency. In the course of further characterizing the phenotype and identifying the causative mutation, this research included 1) reverse genetics to test genes hypothesized to modulate carbon-phosphate interactions; 2) whole genome sequencing to identify all T-DNA insertions in plants displaying the phenotype; 3) genetic crosses and segregation analysis to isolate the causative mutation; and 4) transcriptomics to capture gene-expression profiles in plants displaying the phenotype. These phenotypes were traced to a T-DNA insertion located on chromosome 4. Transcriptomics by RNA-Seq and data analysis through bioinformatics pipelines suggest disruptions in metabolic and transport pathways that include phosphate, but do not support a direct role of well-established phosphate acquisition mechanisms. Gene At1G78690 is immediately downstream of the T-DNA insertion site and shows modestly increased expression relative to wild type plants. At1G78690 encodes O-acyl transferase, which is involved in processing N-acylphosphotidyl ethanolamine (NAPE) to N-acyl ethanolamine (NAE). Exogenous NAE application causes stunted growth in specific …
Date: December 2020
Creator: Shaikh, Mearaj Ahmed A J
System: The UNT Digital Library

Analysis of the Cytochrome P450 and UDP-Glucuronosyltransferase Families and Vitamin D3- Supplementation in Anoxia Survival in Caenorhabditis elegans

Alteration in diet and knockdown of detoxification genes impacts the response of C. elegans to oxygen deprivation stress. I hypothesized that feeding worms a vitamin D3-supplementation diet would result in differential oxygen deprivation stress response. We used a combination of wet lab and transcriptomics approach to investigate the effect of a vitamin-D3 supplemented diet on the global gene expression changes and the anoxia response phenotype of C. elegans (Chapter 2). C. elegans genome consists of 143 detoxification genes (cyp and ugt). The presence of a significant number of genes in these detoxification families was a challenge with identifying and selecting specific cyp and ugt genes for detailed analysis. Our goal was to understand the evolution, phylogenetic, and expression of the detoxification enzymes CYPs and UGTs in C. elegans (Chapter 3). We undertook a phylogenetic and bioinformatics approach to analyze the C. elegans, detoxification family. Phylogenetic analysis provided insight into the association of the human and C. elegans xenobiotic/endobiotic detoxification system. Protein coding genes in C. elegans have been predicted to be human orthologs. The results of this work demonstrate the role of C. elegans in the identification and characterization of vitamin D3 induced alterations in gene expression profile and anoxia …
Date: December 2020
Creator: Agarwal, Sujata
System: The UNT Digital Library

Identification, Characterization and Engineering of UDP-Glucuronosyltransferases for Synthesis of Flavonoid Glucuronides

Flavonoids are polyphenolics compounds that constitute a major group of plant specialized metabolites, biosynthesized via the phenylpropanoid/polymalonate pathways. The resulting specialized metabolites can be due to decoration of flavonoid compounds with sugars, usually glucose, by the action of regiospecific UDP-glycosyltransferase (UGT) enzymes. In some cases, glycosylation can involve enzymatic attachment of other sugar moieties, such as glucuronic acid, galactose, rhamnose or arabinose. These modifications facilitate or impact the bioactivity, stability, solubility, bioavailability and taste of the resulting flavonoid metabolites. The present work shows the limitations of utilizing mammalian UDP-glucuronosyltransferases (UGATs) for flavonoid glucuronidation, and then proceeds to investigate plant UG(A)T candidates from the model legume Medicago truncatula for glucuronidating brain-targeted flavonoid metabolites that have shown potential in neurological protection. We identified and characterized several UG(A)T candidates from M. truncatula which efficiently glycosylate various flavonoids compounds with different/multiple regiospecificities. Biochemical characterization identified one enzyme, UGT84F9, that efficiently glucuronidates a range of flavonoid compounds in vitro. In addition, examination of the ugt84f9 gene knock-out mutation in M. truncatula indicates that UGT84F9 is the major UG(A)T enzyme that is necessary and sufficient for attaching glucuronic acid to flavonoid aglycones, particularly flavones, in this species. Finally, the identified UG(A)T candidates were analyzed via homology …
Date: December 2020
Creator: Adiji, Olubu Adeoye
System: The UNT Digital Library

Medicago truncatula NPF1.7: Structure-Function Assessment and Potential as a Phytohormone Transporter

In Medicago truncatula, the MtNPF1.7 transporter has been shown to be essential for root morphology and nodulation development. The allelic MtNPF1.7 mutants, Mtnip-1 (A497V), Mtnip-3 (E171K), and Mtlatd (W341STOP), show altered lateral root growth and compromised legume-rhizobium symbiosis. To assess the role of a series of distinct amino acids in the transporter's function, in silico structural predictions were combined with in planta complementation of the severely defective Mtnip-1 mutant plants. The findings support hypotheses about the functional importance of the ExxE(R/K) motif including an essential role for the first glutamic acid of the motif in proton(s) and possibly substrate transport. The results also question the existence of a putative TMH4-TMH10 salt bridge, which may not form in MtNPF1.7. Results reveal that a motif conserved among MFS proteins, Motif A, is essential for function. Hypothetically, the Motif A participates in intradomain packing of transmembrane helices and stabilizing one conformation during transport. The mutated valine (A497V) in Mtnip-1 may interfere with the lateral helix. Mutating a residue (L253) on the lateral helix with reduced side chain restored Mtnip-1 function. The predicted residue (Q351) for substrate binding is not essential for protein function. To probe the possibility that MtNPF1.7 transports auxin, two heterologous …
Date: December 2022
Creator: Yu, Yao Chuan
System: The UNT Digital Library

Identification and Characterization of Two Putative Sulfate Transporters Essential for Symbiotic Nitrogen Fixation in Medicago truncatula

The process of symbiotic nitrogen fixation (SNF) in legume root nodules requires the channeling and exchange of nutrients within and between the host plant cells and between the plant cells and their resident rhizobia. Using a forward genetics approach in the Medicago truncatula Tnt1 mutant population followed by whole genome sequencing, two putative sulfate transporter genes, MtSULTR3;5 and MtSULTR3;4b, were identified. To support the hypothesis that the defective putative sulfate transporter genes were the causative mutation for the mutants' phenotypes, the M. truncatula Tnt1 population was successfully reverse screened to find other mutant alleles of the genes. The F2 progeny of mutants backcrossed with wildtype R108 demonstrated co-segregation of mutant phenotypes with the mutant alleles confirming that the mutated mtsultr3;5 and mtsultr3;4b genes were the cause of defective SNF in the mutant lines mutated in the respective genes. This finding was further established for mtsultr3;4b by successful functional complementation of a mutant line defective in the gene with the wildtype copy of MtSULTR3;4b. A MtSULTR3;4b promoter-GUS expression experiment indicated MtSULTR3;4b expression in the vasculature and infected and uninfected plant cells of root nodules. MtSULTR3;4b was found to localize to the autophagosome membrane when expressed in Nicotiana benthamiana. A transcriptomics study …
Date: December 2022
Creator: Pradhan, Rajashree
System: The UNT Digital Library

Toxicological and Biochemical Changes Induced by Sub-Acute Exposure of Biological Organisms to Silver Nanoparticles Using Soft-Landing Ion Mobility Instrument

In this study, we have developed a novel way of generating and exposing biological organisms (both prokaryotic and eukaryotic) to silver nanoparticles (AgNPs) and studying the biochemical changes induced by these particles. We analyzed the various organs of Wistar rats for localization and quantification of these particles using mass spectrometric and molecular biological techniques. Highest levels of AgNP was found in the lung tissue in addition to being present in the liver and kidneys. Analysis of the of the blood plasma from AgNP exposed rats revealed elevated levels of glutathione-disulfide, which is indicative of reactive oxygen species (ROS) generation, which was further validated using ROS specific immunofluorescence staining of liver tissue. Quantification of blood lactate levels of the AgNP exposed rats showed increased lactate levels, which is indicative of anaerobic respiration and may result from AgNP-induced oxidative stress. Further analysis of bone marrow cells from AgNP exposed rats showed a higher number of micronuclei formation in developing erythrocytes and bone marrow cytotoxicity. Finally, analysis of the genes involved in the renin-angiotensin system (RAS) and inflammatory response revealed upregulation in transcript levels of many of these important genes in the liver tissue. Taken together, our study provides an initial road map …
Date: December 2020
Creator: Nayek, Subhayu
System: The UNT Digital Library

Manipulation of Lipid Droplet Biogenesis for Enhanced Lipid Storage in Arabidopsis thaliana and Nicotiana benthamiana

In this study, I examined the use of mouse (Mus musculus) Fat Specific Protein 27 (FSP27) ectopically expressed in Arabidopsis thaliana and Nicotiana benthamiana as a means to increase lipid droplet (LD) presence in plant tissues. In mammalian cells, this protein induces cytoplasmic LD clustering and fusion and helps prevent breakdown of LDs contributing to the large, single LD that dominates adipocytes. When expressed in Arabidopsis thaliana and Nicotiana benthamiana, FSP27 retained its functionality and supported the accumulation of numerous and large cytoplasmic LDs, although it failed to produce the large, single LD that typifies adipose cells. FSP27 has no obvious homologs in plants, but a search for possible distant homologs in Arabidopsis returned a Tudor/PWWP/MBT protein coded for by the gene AT1G80810 which for the purposes of this study, we have called LIPID REGULATORY TUDOR DOMAIN CONTAINING GENE 1 (LRT1). As a possible homolog of FSP27, LRT1 was expected to have a positive regulatory effect on LDs in cells. Instead, a negative regulatory effect was observed in which disruption of the gene induced an accumulation of cytoplasmic LDs in non-seed tissue. A study of lrt1 mutants demonstrated that disruption this gene is the causal factor of the cytoplasmic LD …
Date: December 2021
Creator: Price, Ann Marie
System: The UNT Digital Library
Lipogenic Proteins in Plants: Functional Homologues and Applications (open access)

Lipogenic Proteins in Plants: Functional Homologues and Applications

Although cytoplasmic lipid droplets (LDs) are the major reserves for energy-dense neutral lipids in plants, the cellular mechanisms for packaging neutral lipids into LDs remain poorly understood. To gain insights into the cellular processes of neutral lipid accumulation and compartmentalization, a necessary step forward would be to characterize functional roles of lipogenic proteins that participate in the compartmentalization of neutral lipids in plant cells. In this study, the lipogenic proteins, Arabidopsis thaliana SEIPIN homologues and mouse (Mus Musculus) fat storage-inducing transmembrane protein 2 (FIT2), were characterized for their functional roles in the biogenesis of cytoplasmic LDs in various plant tissues. Both Arabidopsis SEIPINs and mouse FIT2 supported the accumulation of neutral lipids and cytoplasmic LDs in plants. The three Arabidopsis SEIPIN isoforms play distinct roles in compartmentalizing neutral lipids by enhancing the numbers and sizes of LDs in various plant tissues and developmental stages. Further, the potential applications of Arabidopsis SEIPINs and mouse FIT2 in engineering neutral lipids and terpenes in plant vegetative tissues were evaluated by co-expressing these and other lipogenic proteins in Nicotiana benthamiana leaves. Arabidopsis SEIPINs and mouse FIT2 represent effective tools that may complement ongoing strategies to enhance the accumulation of desired neutral lipids and terpenes …
Date: December 2018
Creator: Cai, Yingqi
System: The UNT Digital Library
Compartmentalization of Jojoba Seed Lipid Metabolites (open access)

Compartmentalization of Jojoba Seed Lipid Metabolites

Seeds from the desert shrub Simmondsia chinensis (jojoba) are one of the only known natural plant sources to store a majority of its oil in the form of liquid wax esters (WE) instead of triacylglycerols (TAGs) and these oils account for ~55% of the seed weight. Jojoba oil is highly valued as cosmetic additives and mechanical lubricants, yet despite its value much is still unknown about its neutral lipid biosynthetic pathways and lipid droplet packaging machinery. Here, we have used a multi-"omics" approach to study how spatial differences in lipid metabolites, gene expression, and lipid droplet proteins influence the synthesis and storage of jojoba lipids. Through these studies mass spectrometry analyses revealed that WEs are compartmentalized primarily in the cotyledonary tissues, whereas TAGs are, surprisingly, localized to the embryonic axis tissues. To study the differences in gene expression between these two tissues, a de novo transcriptome was assembled from high throughput RNAseq data. Differential gene expression analysis revealed that the Jojoba Wax Synthase, which catalyzes the formation of wax esters, and the Diacylglycerol O-Acyltransferase1, which catalyzes the final acylation of triacylglycerol synthesis, were differentially expressed in the cotyledons and embryonic axis tissues, respectively. Furthermore, through proteomic analysis of lipid droplet …
Date: December 2018
Creator: Sturtevant, Drew
System: The UNT Digital Library
Glucose-Induced Developmental Delay is Modulated by Insulin Signaling and Exacerbated in Subsequent Glucose-Fed Generations in Caenorhabditis elegans (open access)

Glucose-Induced Developmental Delay is Modulated by Insulin Signaling and Exacerbated in Subsequent Glucose-Fed Generations in Caenorhabditis elegans

In this study, we have used genetic, cell biological and transcriptomic methods in the nematode C. elegans as a model to examine the impact of glucose supplementation during development. We show that a glucose-supplemented diet slows the rate of developmental progression (termed "glucose-induced developmental delay" or GIDD) and induces the mitochondrial unfolded protein response (UPRmt) in wild-type animals. Mutation in the insulin receptor daf-2 confers resistance to GIDD and UPRmt in a daf-16-dependent manner. We hypothesized that daf-2(e1370) animals alter their metabolism to manage excess glucose. To test this, we used RNA-sequencing which revealed that the transcriptomic profiles of glucose-supplemented wildtype and daf-2(e1370) animals are distinct. From this, we identified a set of 27 genes which are both exclusively upregulated in daf-2(e1370) animals fed a glucose-supplemented diet and regulated by daf-16, including a fatty acid desaturase (fat-5), and two insulin-like peptides (ins-16 and ins-35). Mutation of any of these genes suppresses the resistance of daf-2(e1370) to GIDD. Additionally, double mutation of ins-16 and ins-35 in a daf-2(e1370) background results in an increase in constitutive dauer formation which is suppressed by glucose supplementation. Further investigation of the insulin-like peptides revealed that ins-16 mutation in a wild-type background results in upregulation of …
Date: December 2023
Creator: Nahar, Saifun
System: The UNT Digital Library
Investigating Novel Streptomyces Bacteriophage Endolysins as Potential Antimicrobial Agents (open access)

Investigating Novel Streptomyces Bacteriophage Endolysins as Potential Antimicrobial Agents

As antibiotic resistance has become a major global threat, the World Health Organization has urgently called scientists for alternative strategies for control of bacterial infections. Endolysin, a protein encoded by a phage gene, can degrade bacterial peptidoglycan (PG). Currently, there are three endolysin products in the clinical phase. We, thus, are interested in exploring novel endolysins from Streptomyces phages as only a few of them have been experimentally characterized. Using bioinformatics tools, we identified nine functional domain groups from 250 Streptomyces phages putative endolysins. NootNoot gp34 (transglycosylase; Nt34lys), Nabi gp26 (amidase; Nb26lys), Tribute gp42 (PGRP; Tb42lys), and LazerLemon gp35 (CHAP; LL35lys) were selected for experimental studies. We hypothesized that (1) the proteins of interest will have the ability to degrade PG, and (2) the proteins will be potential antimicrobial agents against ESKAPE safe relatives. The results showed that LL35lys, Nb26lys and Tb42lys exhibit PG-degrading activity on zymography and hydrolysis assay. The enzymes (400 µg/mL) can reduce PG turbidity to 32-40%. The killing assay suggested that Tb42lys possess a boarder range (Escherichia coli, Pseudomonas putida, Acinetobacter baylyi and Klebsiella aerogenes). While Nb26lys can attack Gram-negative bacteria, LL35lys can only reduce the growth of the Gram-positive strains with an MIC90 of 2 …
Date: December 2023
Creator: Maneekul, Jindanuch
System: The UNT Digital Library

Fatty Acid Amide Hydrolases in Upland Cotton (Gossypium hirsutum L.) and the Legume Model Medicago truncatula

Fatty acid amide hydrolase (FAAH) is a widely conserved amidase in eukaryotes, best known for inactivating the signal of N-acylethanolamine (NAE) lipid mediators. In the plant Arabidopsis thaliana, FAAH-mediated hydrolysis of NAEs has been associated with numerous biological processes. Recently, the phylogenetic distribution of FAAH into two major branches (group I and II FAAHs) across angiosperms outside of Arabidopsis (and in other Brassicaceae), suggests a previously unrecognized complexity of this enzyme. Although A. thaliana has long been used to assess biological questions for plants, in this case it will fall short in understanding the significance of multiple FAAHs in other plant systems. Thus, in this study, I examined the role (s) of six FAAH isoforms in upland cotton (Gossypium hirsutum L.) and two FAAHs in the legume Medicago truncatula.
Date: December 2023
Creator: Arias Gaguancela, Omar Paul
System: The UNT Digital Library