FT-NMR and Raman Spectroscopic Studies of Molecular Dynamics in Liquids (open access)

FT-NMR and Raman Spectroscopic Studies of Molecular Dynamics in Liquids

NMR relaxation and Raman lineshape analysis are well known methods for the study of molecular reorientational dynamics in liquids. The combination of these two methods provides another approach to tackle the characterization of molecular dynamics in liquids. Investigations presented here include (1) NMR relaxation study of polycyclic compounds in solution, (2) the study of nitromethane reorientational dynamics using the NMR and Raman methods, and (3) Raman lineshape analysis of reorientation hexafluorobenzene/benzene mixtures.
Date: December 1993
Creator: Wang, Kuen-Shian
System: The UNT Digital Library
Kinetic Studies of the Reactions of Alkyl and Silyl Hydrides (open access)

Kinetic Studies of the Reactions of Alkyl and Silyl Hydrides

The Kinetics of the reactions involving alkyl and silyl hydrides were studied by the flash photolysis / resonance fluorescence technique. The reactions of alkyl radicals (R = C₂H₅, i-C₃H₇, t-C₄H₉) with HBr have been studied at room temperature and the rate constants obtained (units are in cm³ s^-1 ) are: k₃.₃ = (7.01 ± 0.15) x 10^-12, k₃.₂ = (1.25 ± 0.06) x 10^-11, k₃.₁ = (2.67 ± 0.13) x 10^-11 These results, combined with previously determined reverse rate constants and other kinetic information, yield bond dissociation enthalpies (units in kJ mol^-1) at 298 K : primary C-H in C₂H₅-H (423.6 ± 2), secondary C-H in i-C₃H₇-H (409.9 ± 2), tertiary C-H in t-C₄H₉-H (405.1 ± 2). These rate constants and bond energies are in good agreement with previous results.
Date: August 1996
Creator: Yuan, Jessie (Jessie Win-Jae)
System: The UNT Digital Library
Selectivity Failure in the Chemical Vapor Deposition of Tungsten (open access)

Selectivity Failure in the Chemical Vapor Deposition of Tungsten

Tungsten metal is used as an electrical conductor in many modern microelectronic devices. One of the primary motivations for its use is that it can be deposited in thin films by chemical vapor deposition (CVD). CVD is a process whereby a thin film is deposited on a solid substrate by the reaction of a gas-phase molecular precursor. In the case of tungsten chemical vapor deposition (W-CVD) this precursor is commonly tungsten hexafluoride (WF6) which reacts with an appropriate reductant to yield metallic tungsten. A useful characteristic of the W-CVD chemical reactions is that while they proceed rapidly on silicon or metal substrates, they are inhibited on insulating substrates, such as silicon dioxide (Si02). This selectivity may be exploited in the manufacture of microelectronic devices, resulting in the formation of horizontal contacts and vertical vias by a self-aligning process. However, reaction parameters must be rigorously controlled, and even then tungsten nuclei may form on neighboring oxide surfaces after a short incubation time. Such nuclei can easily cause a short circuit or other defect and thereby render the device inoperable. If this loss of selectivity could be controlled in the practical applications of W-CVD, thereby allowing the incorporation of this technique into …
Date: August 1994
Creator: Cheek, Roger W. (Roger Warren)
System: The UNT Digital Library
Part 1. Investigation of Aluminum Amino Acid Complexes; Part 2. Structural Studies of Aluminum Chalcogen Bonds (open access)

Part 1. Investigation of Aluminum Amino Acid Complexes; Part 2. Structural Studies of Aluminum Chalcogen Bonds

Five different complexes of aluminum and amino acids have been synthesized and characterized. Reaction between aluminum halides and amino acids that do not contain either a carboxylate or a hydroxy group in the side chain produce complexes of the general formula, [Al(amino acid)_n(halide)_3-n]_m. The most prevalent form of this form of complex is where n = 2, and an example of this in which the halide is replaced by hydroxide ligand has been structurally characterized. The complex for which n = 3 may be obtained by employing a large excess of acid, and that for which n = 1 may be obtained by employing either equimolar conditions or an excess of aluminum halide. Reactions of aluminum halides with amino acids that contain either a carboxylate or hydroxy-containing side chain may result in complexes in which the side-chain is also bound. These proved impossible to characterize fully in the case of aspartic acid. For serine, however, a complex in which the amino acid binds in a chelating fashion through both the carboxylate and hydroxy groups was isolated. It was possible to form complexes when utilizing aluminum alkyls as the metal source. However, these complexes could only be isolated when the reactivity …
Date: May 1996
Creator: Gravelle, Philip W. (Philip Wyn)
System: The UNT Digital Library
Preparation and Stereochemistry of Reactive Intermediates Containing a Silicon-Carbon Double Bond (open access)

Preparation and Stereochemistry of Reactive Intermediates Containing a Silicon-Carbon Double Bond

1,1-Dimethyl-2-neopentylsilene reacted with the N-methylimine of benzophenone to give 1,2,2-trimethyl-3- neopentyl-4,4-diphenyl-l-aza-2-silacyclobutane, I, and 2,3,4,4a-tetrahydro-2,3,3-trimethyl-1-phenyl-4-neopentyl-2- aza-3-silanephthalene, II, in 35% and 20% yields, respectively. Compounds I and II did not serve as thermal silene precursors. Heating I and II to over 280°C did not yield 1,3-disilacyclobutanes. In the presence of 2,3- dimethyl-1,3-butadiene typical silene products were not obtained. However, I and II reacted rapidly with methanol at room temperature to give the ring-opened products (E)-2- methoxy-2,5,5-trimethyl-2-silahex-3-ene, III, 1,1- diphenyldimethylamine, IV, and 2-methoxy-2,5,5-trimethyl-3- (N-methylaminodiphenyl) methyl-2-silahexane, V.
Date: December 1991
Creator: Uang, Shinian
System: The UNT Digital Library
Solvent and Ionic Complexes of the Calix[6]arenes (open access)

Solvent and Ionic Complexes of the Calix[6]arenes

One of the more attractive attributes of calixarenes is their wide variety of possible conformations and hence cavity shapes. However, the flexibility that allows this long-range benefit gives rise to major synthetic challenges when working with the larger members of the family. O-alkylations have proven to be the most widely employed synthetic routes to "functionalization" of the calixarenes, and these have shown a dependence upon both solvent and the metal ions present. Surprisingly, there have been no structural data presented concerning the complexes between the simple unsubstituted calix[6]arenes and the metal ions of groups 1 and 2. The structures of four complexes, containing cesium, rubidium, and calcium are reported as determined by X-ray crystallography. The solution behavior of the complexes for both representative groups is also discussed, in particular with regard to conformational stabilization of the calix[6]arenes and the role of solvent upon this stabilization. These complexes are also investigated as starting materials for the selective functionalization of the calix[6]arenes.
Date: December 1997
Creator: Wolfgong, William J.
System: The UNT Digital Library
Part I: Solid State Studies of Larger Calixarenes : Part II: Synthesis and Characterization of Metallocalixarenes (open access)

Part I: Solid State Studies of Larger Calixarenes : Part II: Synthesis and Characterization of Metallocalixarenes

Calixarenes are a class of macrocyclic compounds that have garnered interest in large part because of their ability to form host-guest complexes with various types of molecules. For all of the studies of complex formation by calixarenes, most of the work to date has concentrated upon the smaller calixarenes, and little is understood about the relationship between the complexes formed when in solution and that observed in the solid state. The first part of the study, presented in Chapter 3, is of the solid-state properties of two of the larger calixarenes, and in comparison to other reported structures reveals patterns to the observed conformations both in the solid state and in solution. The formation of metal complexes has also been investigated and has focused extensively upon the metals as guests. Thus, the ability of the calixarenes to act as ligands in inorganic complexes has been virtually untapped, despite the polyoxo binding site they can easily provide, and very few metallocalixarenes have been reported. The second part of this study goes beyond the simple solid-state properties of such compounds, and involves the synthesis of several metallocalixarenes as part of a project directed at the functionalization of calixarenes with the components of …
Date: May 1998
Creator: Smith, Janna Marie
System: The UNT Digital Library
Synthesis and Study of Bioactive Compounds: I. Pyrethroids; II. Glutathione Derivatives (open access)

Synthesis and Study of Bioactive Compounds: I. Pyrethroids; II. Glutathione Derivatives

Part I: In the first study of pyrethroids, twenty-one novel pyrethroid esters bearing strong electron-withdrawing groups (e.g., halomethylketo and nitro groups) in the double bond side chain of the cyclopropane acid moiety have been synthesized and evaluated for insect toxicity. Rather than the usually employed Wittig reaction for these syntheses, the novel pyrethroid acid moieties were prepared by amino acidcatalyzed Knoevenagel condensations under mild conditions. In the second study of pyrethroids, fourteen pyrethroid-like carbonates were synthesized by condensation of a variety of alcohols and the chloroformates of the corresponding known pyrethroid alcohols.
Date: May 1995
Creator: Chyan, Ming-Kuan
System: The UNT Digital Library
Stabilization of Different Lead Compounds in Portland Cement (open access)

Stabilization of Different Lead Compounds in Portland Cement

This research investigated the chemistries and mechanisms involved in lead-cement systems through the study of a larger number of lead compounds.
Date: August 1993
Creator: Zhao, Baoshu (Baoshu Eric)
System: The UNT Digital Library
Magnetic Exchange in Oxovanadium(IV) Complexes with N-Salicylideneamino Acids (open access)

Magnetic Exchange in Oxovanadium(IV) Complexes with N-Salicylideneamino Acids

Copper(II) and oxovanadium(IV) ions resemble one another magnetically in having one unpaired electron in their complexes irrespective of their geometrical structures and bond types involved. Copper(II) complexes with antiferromagnetic exchange are well known. On the contrary, antiferromagnetic exchange in oxovanadium(IV) complexes is rather new and not well established. Very few oxovanadium(IV) complexes have been reported to have this anomalous magnetic property. In the investigation of the magnetic properties of oxovanadium(IV) complexes, we have successfully prepared two series of new oxovanadium(IV) complexes with N-salicylideneamino acids.
Date: January 1968
Creator: Hu, James Hung-Jen
System: The UNT Digital Library
NMR Study of the Reorientational and Exchange Dynamics of Organometallic Complexes (open access)

NMR Study of the Reorientational and Exchange Dynamics of Organometallic Complexes

Investigations presented here are (a) the study of reorientational dynamics and internal rotation in transition metal complexes by NMR relaxation experiments, and (b) the study of ligand exchange dynamics in transition metal complexes by exchange NMR experiments. The phenyl ring rotation in Ru3(CO)9(μ3-CO)(μ3-NPh) and Re(Co)2(CO)10(μ3- CPh) was monitored by 13C NMR relaxation experiments to probe intramolecular electronic and/or steric interactions. It was found that the rotation is relatively free in the first complex, but is restrained in the second one. The steric interactions in the complexes were ascertained by the measurement of the closest approach intramolecular distances. The rotational energy barriers in the two complexes were also calculated by using both the Extended Hiickel and Fenske-Hall methods. The study suggests that the barrier is due mainly to the steric interactions. The exchange NMR study revealed two carbonyl exchange processes in both Ru3(CO)9(μ3-CO)(μ3-NPh) and Ru3(CO)8(PPh3)(μ3-CO)(μ3-NPh). The lower energy process is a tripodal rotation of the terminal carbonyls. The higher energy process, resulting in the exchange between the equatorial and bridging carbonyls, but not between the axial and bridging carbonyls, involves the concerted formation of edge-bridging μ2-CO moieties. The effect of the PPh3 ligand on the carbonyl exchange rates has been discussed. …
Date: May 1996
Creator: Wang, Dongqing
System: The UNT Digital Library
Spectroscopic Properties of Polycyclic Aromatic Compounds (open access)

Spectroscopic Properties of Polycyclic Aromatic Compounds

The fluorescence spectrum of many polycyclic aromatic compounds (PACs) depends upon solvent polarity. The emission spectrum of PAC monomers consists of several major vibronic bands labeled I, II, etc., in progressive order. Emission intensity enhancement of select bands is observed in polar solvents.
Date: May 1994
Creator: Tucker, Sheryl A. (Sheryl Ann)
System: The UNT Digital Library
Kinetics and Mechanisms of Metal Carbonyls (open access)

Kinetics and Mechanisms of Metal Carbonyls

Pulsed laser flash photolysis with both visible and infrared detection has been applied to the study of the displacement of weakly coordinating ligands (Lw) by strongly "trapping" nucleophiles (Ls) containing either an olefinic functionality (Ls = 1-hexene, 1-decene, 1-tetradecene) or nitrogen (Ls = acetonitrile, hydrocinnamonitrile) from the photogenerated 16 electron pentacarbonylchromium (0) intermediate. 5-Chloropent-l-ene (Cl-ol), a potentially bidentate ligand, has been shown to form (ol-Cl) pentacarbonylchromium (0), in which Cl-ol is bonded to Cr via a lone pair on the chlorine, and isomerize to (Cl-ol) pentacarbonylchromium (0), in which Cl-ol is bonded to the olefinic functionality on the submillisecond time scale. This process has been studied in both the infrared and visible region employing both fluorobenzene or n-heptane as the "inert" diluent. Parallel studies employing 1-chlorobutane and 1-hexene were also evaluated and showed great similiarity with the Cl-ol system. The data supported a largely dissociative process with a possibility of a small interchange process involving the H's on the alkyl chain. Studies were also carried out for various Cr(CO)6/arene/Ls systems (arene = various alkyl or halogenated substituted benzenes). The data indicated that for both C6H5R (R=various alkyl chains) or multi-alkyl substituted arenes (i.e. o-xylene, 1,2,3-trimethylbenzene) containing an "unhindered" ring-edge, bonding …
Date: May 1998
Creator: Ladogana, Santino
System: The UNT Digital Library
Chemical Equilibria in Binary Solvents (open access)

Chemical Equilibria in Binary Solvents

Dissertation research involves development of Mobile Order Theory thermodynamic models to mathematically describe and predict the solubility, spectral properties, protonation equilibrium constants and two-phase partitioning behavior of solutes dissolved in binary solvent mixtures of analytical importance. Information gained provide a better understanding of solute-solvent and solvent-solvent interactions at the molecular level, which will facilitate the development of better chemical separation methods based upon both gas-liquid and high-performance liquid chromatography, and better analysis methods based upon complexiometric and spectroscopic methods. Dissertation research emphasizes chemical equilibria in systems containing alcohol cosolvents with the understanding that knowledge gained will be transferable to more environmentally friendly aqueous-organic solvent mixtures.
Date: August 1997
Creator: McHale, Mary E. R.
System: The UNT Digital Library
Using the Abraham Solvation Parameter Model to Predict Solute Transfer into Various Mono- and Multi-Functional Organic Solvents (open access)

Using the Abraham Solvation Parameter Model to Predict Solute Transfer into Various Mono- and Multi-Functional Organic Solvents

The Abraham Solvation Parameter Model (ASPM) is a linear, free-energy relationship that can be used to predict various solute properties based on solute-solvent interactions. The ASPM has been used to predict log (K or Cs,organic/Cs,gas) values, as well as log (P or Cs,organic/Cs,water) values for solute transfer into the following organic solvents: 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol, 2-isopropoxyethanol and 2-butoxyethanol. The derived log (K or Cs,organic/Cs,gas) correlations describe the experimental data to within 0.14 log units (or less). The derived log (P or Cs,organic/Cs,water) correlations describe the experimental data to within 0.16 log units (or less). The ASPM has also been used to predict the enthalpies of solvation of organic solutes dissolved in the following solvents: acetic acid, dimethyl carbonate, diethyl carbonate, 1-butanol, 1-pentanol, 1-hexanol. The derived enthalpy of solvation correlations, using the L solute descriptor, describe the experimental data to within 2.50 log units (or less). The derived enthalpy of solvation correlations, using the V solute descriptor, describe the experimental data to within 3.10 log units (or less). Validation analyses have been performed on several of the correlations; and, as long as the solute descriptors fall within the given ranges as reported, the original correlations show good predictive ability for determining …
Date: May 2018
Creator: Hart, Erin F
System: The UNT Digital Library
Computational Investigation of DNA Repair Enzymes: Determination and Characterization of Cancer Biomarkers and Structural Features (open access)

Computational Investigation of DNA Repair Enzymes: Determination and Characterization of Cancer Biomarkers and Structural Features

Genomic integrity is important for living cells' correct functioning and propagation. Deoxyribonucleic acid as a molecule is a subject to chemical reactions with agents that can come from environment as well as from internal metabolism processes. These reactions can induce damage to DNA and thus compromise the genetic information, and result in disease and death of an organism. To mitigate the damage to DNA, cells have evolved to have multiple DNA repair pathways. Presented here is a computational study of DNA repair genes. The structure of the Homo sapiens direct DNA repair gene ALKBH1 is predicted utilizing homology modeling methods and using AlkB and DBL proteins as templates. Analysis of the obtained structure and molecular dynamics simulations give insights into potentially functionally important residues of the protein. In particular, zinc finger domains are predicted, and lysines that could perform catalytic activities are investigated. Subsequent mutagenesis experiments revealed the effect of the residues predicted to form zinc fingers on activity of ALKBH1. Structure and dynamics of AlkD, a Bascillus cereus base excision DNA repair protein is also studied. This protein has been shown to bind DNA with large alkyl adducts and perform excision catalysis without base flipping which is characteristic to …
Date: May 2018
Creator: Silvestrov, Pavel
System: The UNT Digital Library
Computational Study of Small Molecule Activation via Low-Coordinate Late First-Row Transition Metal Complexes (open access)

Computational Study of Small Molecule Activation via Low-Coordinate Late First-Row Transition Metal Complexes

Methane and dinitrogen are abundant precursors to numerous valuable chemicals such as methanol and ammonia, respectively. However, given the robustness of these substrates, catalytically circumventing the high temperatures and pressures required for such transformations has been a challenging task for chemists. In this work, computational studies of various transition metal catalysts for methane C-H activation and N2 activation have been carried out. For methane C-H activation, catalysts of the form LnM=E are studied, where Ln is the supporting ligand (dihydrophosphinoethane or β-diketiminate), E the activating ligand (O, NCH3, NCF3) at which C-H activation takes place, and M the late transition metal (Fe,Co,Ni,Cu). A hydrogen atom abstraction (HAA) / radical rebound (RR) mechanism is assumed for methane functionalization (CH4 à CH3EH). Since the best energetics are found for (β-diket)Ni=O and (β-diket)Cu=O catalysts, with or without CF3 substituents around the supporting ligand periphery, complete methane-to-methanol cycles were studied for such systems, for which N2O was used as oxygen atom transfer (OAT) reagent. Both monometallic and bimetallic OAT pathways are addressed. Monometallic Fe-N2 complexes of various supporting ligands (LnFe-N2) are studied at the beginning of the N2 activation chapter, where the effect of ligand on N2 activation in end-on vs. side-on N2 isomers …
Date: May 2010
Creator: Pierpont, Aaron
System: The UNT Digital Library
Podcast Effectiveness as Scaffolding Support for Students Enrolled in First-Semester General Chemistry Laboratories (open access)

Podcast Effectiveness as Scaffolding Support for Students Enrolled in First-Semester General Chemistry Laboratories

Podcasts covering essential first-semester general chemistry laboratory techniques and central concepts that aid in experimental design or data processing were prepared and made available for students to access on an as-needed basis on iPhones- or iPod touches-. Research focused in three areas: the extent of podcast usage, the numbers and types of interactions between instructors and research teams, and student performance on graded assignments. Data analysis indicates that the podcast treatment research teams accessed a podcast 2.86 times on average during each week that podcasts were available. Comparison of interaction data for the lecture treatment research teams and podcast treatment research teams reveals that interactions with instructors were statistically significantly fewer for teams that had podcast access rather than a pre‐laboratory lecture. The implication of the results is that student research teams were able to gather laboratory information more effectively when it was presented in an on-demand podcast format. Finally, statistical analysis of data on student performance on graded assignments indicates no significant differences between outcome measures for the treatment groups when compared as cohorts. The only statistically significant difference is between students judged to be highly motivated; for this sub‐group the students in the podcast treatment group earned a …
Date: August 2010
Creator: Powell, Mary Cynthia Barton
System: The UNT Digital Library
Photophysical studies of silver(I), platinum(II), palladium(II), and nickel(II) complexes and their use in electronic devices. (open access)

Photophysical studies of silver(I), platinum(II), palladium(II), and nickel(II) complexes and their use in electronic devices.

This dissertation deals with two major topics that involve spectroscopic studies of (a) divalent group 10 metals and (b) silver(I)-phosphine complexes. The scope of the work involved the delineation of the electronic structure of these complexes in different environments and their use in electronic devices. The first topic is a look at the luminescence of tetrahedral silver(I)-phosphine complexes. Broad unstructured emissions with large Stokes shifts were found for these complexes. Computational analysis of the singlet and triplet state geometries suggests that this emission is due to a Jahn-Teller type distortion. The second topic represents the major thrust of this research, which is an investigation into the electronic structure of M(diimine)X2 (M= Pt(II), Pd(II), or Ni(II); X = dichloro, or dithiolate ligands) complexes and their interactions with an electron acceptor or Lewis acid. Chapter 3 assesses the use of some of these complexes in dye sensitized solar cells (DSSCs); it is shown that these complexes may lead to a viable alternative to the more expensive ruthenium-based dyes that are being implemented now. Chapter 4 is an investigation into donor/acceptor pairs involving this class of complexes, which serves as a feasibility test for the use of these complexes in organic photo-voltaics (OPVs) …
Date: December 2007
Creator: Hudson, Joshua M.
System: The UNT Digital Library
Adherence/Diffusion Barrier Layers for Copper Metallization: Amorphous Carbon:Silicon Polymerized Films (open access)

Adherence/Diffusion Barrier Layers for Copper Metallization: Amorphous Carbon:Silicon Polymerized Films

Semiconductor circuitry feature miniaturization continues in response to Moore 's Law pushing the limits of aluminum and forcing the transition to Cu due to its lower resistivity and electromigration. Copper diffuses into silicon dioxide under thermal and electrical stresses, requiring the use of barriers to inhibit diffusion, adding to the insulator thickness and delay time, or replacement of SiO2 with new insulator materials that can inhibit diffusion while enabling Cu wetting. This study proposes modified amorphous silicon carbon hydrogen (a-Si:C:H) films as possible diffusion barriers and replacements for SiO2 between metal levels, interlevel dielectric (ILD), or between metal lines (IMD), based upon the diffusion inhibition of previous a-Si:C:H species expected lower dielectric constants, acceptable thermal conductivity. Vinyltrimethylsilane (VTMS) precursor was condensed on a titanium substrate at 90 K and bombarded with electron beams to induce crosslinking and form polymerized a-Si:C:H films. Modifications of the films with hydroxyl and nitrogen was accomplished by dosing the condensed VTMS with water or ammonia before electron bombardment producing a-Si:C:H/OH and a-Si:C:H/N and a-Si:C:H/OH/N polymerized films in expectation of developing films that would inhibit copper diffusion and promote Cu adherence, wetting, on the film surface. X-ray Photoelectron Spectroscopy was used to characterize Cu metallization of …
Date: May 2004
Creator: Pritchett, Merry
System: The UNT Digital Library
Investigation of Structure and Properties of Low Temperature Deposited Diamond-Like Carbon Films (open access)

Investigation of Structure and Properties of Low Temperature Deposited Diamond-Like Carbon Films

Electrodeposition is a novel method for fabrication of diamond-like carbon (DLC) films on metal substrates. In this work, DLC was electrochemically deposited on different substrates based on an anodic oxidation cyclization of acetylene in liquid ammonia. Successfully anodic deposition was carried out for DLC onto nickel substrate at temperatures below -40°C. Comparative studies were performed on a series of different carbon sources (acetylene, sodium acetylide, and a mixture of acetylene and sodium acetylide). The films were characterized using a variety of methods including Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), XPS valence band spectra, and/or scanning electron microscopy (SEM). Raman spectroscopy is used as a bench mark technique to verify the presence of deposited DLC films, to access the films homogeneities, and to provide the ratio of the different carbon phases, mainly disordered graphite (D) and graphite (G) phases in the films. A combination of the Raman with FTIR and valence band spectra analysis allowed the distinction between hydrogenated DLC and unhydrogenated DLC films. Three different kinds of DLC [(1) hydrogenated DLC (a-C:H); (2) tetrahedral hydrogenated DLC (ta-C:H); and (3) graphitic-like DLC] were deposited depending upon the deposition conditions and substrates. Temperature and current density are …
Date: August 2004
Creator: Pingsuthiwong, Charoendee
System: The UNT Digital Library
Reactivity of Oxide Surfaces and Metal-Oxide Interfaces: Effects of Water Vapor Pressure on Ultrathin Aluminum Oxide Films, and Studies of Platinum Growth Modes on Ultrathin Oxide Films and Their Effects on Adhesion (open access)

Reactivity of Oxide Surfaces and Metal-Oxide Interfaces: Effects of Water Vapor Pressure on Ultrathin Aluminum Oxide Films, and Studies of Platinum Growth Modes on Ultrathin Oxide Films and Their Effects on Adhesion

The reactivity of oxide surfaces and metal-oxide interfaces play an important role in many technological applications such as corrosion, heterogeneous catalysis, and microelectronics. The focus of this research was (1) understanding the effects of water vapor exposure of ultrathin aluminum oxide films under non-ultrahigh vacuum conditions (>10-9 Torr) and (2) characterization of Pt growth modes on ultrathin Ta silicate and silicon dioxide films and the effects of growth modes on adhesion of a Cu overlayer. These studies were conducted with X-ray photoelectron spectroscopy (XPS). Ni3Al(110) was oxidized (10-6 Torr O2, 800K) followed by annealing (1100K). The data indicate that the annealed oxide film is composed of NiO, Al2O3 and an intermediate phase denoted here as "AlOx". Upon exposure of the oxide film at ambient temperature to increasing water vapor pressure (10-6 - 5 Torr), a shift in both the O(1s) and Al(2p)oxide peak maxima to lower binding energies is observed. In contrast, exposure of Al2O3/Al(polycrystalline) to water vapor under the same conditions results in a high binding energy shoulder in the O(1s) spectra which indicates hydroxylation. Spectral decomposition provides further insight into the difference in reactivity between the two oxide films. The corresponding trends of the O(1s)/Ni0(2p3/2) and Al(2p)/Ni0(2p3/2) spectral …
Date: May 2004
Creator: Garza, Michelle
System: The UNT Digital Library
Tantalum- and ruthenium-based diffusion barriers/adhesion promoters for copper/silicon dioxide and copper/low κ integration. (open access)

Tantalum- and ruthenium-based diffusion barriers/adhesion promoters for copper/silicon dioxide and copper/low κ integration.

The TaSiO6 films, ~8Å thick, were formed by sputter deposition of Ta onto ultrathin SiO2 substrates at 300 K, followed by annealing to 600 K in 2 torr O2. X-ray photoelectron spectroscopy (XPS) measurements of the films yielded a Si(2p) binding energy at 102.1 eV and Ta(4f7/2) binding energy at 26.2 eV, indicative of Ta silicate formation. O(1s) spectra indicate that the film is substantially hydroxylated. Annealing the film to > 900 K in UHV resulted in silicate decomposition to SiO2 and Ta2O5. The Ta silicate film is stable in air at 300K. XPS data show that sputter-deposited Cu (300 K) displays conformal growth on Ta silicate surface (TaSiO6) but 3-D growth on the annealed and decomposed silicate surface. Initial Cu/silicate interaction involves Cu charge donation to Ta surface sites, with Cu(I) formation and Ta reduction. The results are similar to those previously reported for air-exposed TaSiN, and indicate that Si-modified Ta barriers should maintain Cu wettability under oxidizing conditions for Cu interconnect applications. XPS has been used to study the reaction of tert-butylimino tris(diethylamino) tantalum (TBTDET) with atomic hydrogen on SiO2 and organosilicate glass (OSG) substrates. The results on both substrates indicate that at 300K, TBTDET partially dissociates, forming …
Date: December 2004
Creator: Zhao, Xiaopeng
System: The UNT Digital Library
Synthesis and study of crystalline hydrogels, guided by a phase diagram. (open access)

Synthesis and study of crystalline hydrogels, guided by a phase diagram.

Monodispersed nanoparticles of poly-N-isopropylacrylamide-co-allylamine (PNIPAM-co-allylamine) and PNIPAM-co-acrylic acid (AA) have been synthesized and used as building blocks for creating three-dimensional networks. The close-packed PNIPAM-co-allylamine and PNIPAM-co-AA nanoparticles were stabilized by covalently bonding neighboring particles at room temperature and at neutral pH; factors which make these networks amicable for drug loading and release. Controlled release studies have been performed on the networks using dextran markers of various molecular weights as model macromolecular drugs. Drug release was quantified under various physical conditions including a range of temperature and molecular weight. These nanoparticle networks have several advantages over the conventional bulk gels for controlling the release of biomolecules with large molecular weights. Monodispersed nanoparticles of poly-N-isopropylacrylamide-co-allylamine (PNIPAM-co-allylamine) can self-assemble into crystals with a lattice spacing on the order of the wavelength of visible light. By initiating the crystallization process near the colloidal crystal melting temperature, while subsequently bonding the PNIPAM-co-allylamine particles below the glass transition temperature, a nanostructured hydrogel has been created. The crystalline hydrogels exhibit iridescent patterns that are tunable by the change of temperature, pH value or even protein concentration. This kind of soft and wet hydrogel with periodic structures may lead to new sensors, devices, and displays operating in aqueous …
Date: December 2004
Creator: Huang, Gang
System: The UNT Digital Library