Understanding conformal field theory through parafermions and Chern Simons theory (open access)

Understanding conformal field theory through parafermions and Chern Simons theory

Conformal field theories comprise a vast class of exactly solvable two dimensional quantum field theories. Conformal theories with an enlarged symmetry group, the current algebra symmetry, axe a key ingredient to possible string compactification models. The following work explores a Lagrangian approach to these theories. In the first part of this thesis, a large class of conformal theories, the so-called coset models, are derived semi-classically from a gauged version Of the Wess-Zumino-Witten functional. A non-local field transformation to the parafermionic field description is employed in the quantization procedure. Classically, these parafermionic fields satisfy non-trivial Poisson brackets, providing insight into the fractional spin nature of the conformal theory. The W-algebra symmetry is shown to appear naturally in this approach. In the second part of this thesis, the connection between the fusion algebra structure of Wess-Zumino-Witten models and the quantization of the Chern-Simons action on the torus is made explicit. The modular properties of the conformal model are also derived in this context, giving a natural demonstration of the Verlinde conjecture. The effects of background gauge fields and monopoles are also discussed.
Date: November 19, 1992
Creator: Hotes, S. A.
System: The UNT Digital Library
Synthesis and study of novel silicon-based unsaturated polymers (open access)

Synthesis and study of novel silicon-based unsaturated polymers

Novel unsaturated polymers have been synthesized and studied as precursors to silicon carbide and third order nonlinear optical materials. X ray structures were obtained. Kinetic and mechanistic studies of the unique thermal isomerization of dimethylenedisilacyclobutane to a carbene were conducted.
Date: June 19, 1995
Creator: Lin, J.
System: The UNT Digital Library
Magnetization studies of oxides related to the high temperature cuprate superconductors (open access)

Magnetization studies of oxides related to the high temperature cuprate superconductors

The magnetic properties related to the following high temperature superconductors were measured utilizing a Faraday magnetometer: BaCuO{sub 2+x}, La{sub 2} CuO{sub 4}, Sr{sub 2} RhO{sub 4}, Sr{sub 2} VO{sub 4}, and Sr{sub 2} CuO{sub 3}. Neutron diffraction, magnetic susceptibility, and heat capacity measurements are discussed.
Date: June 19, 1995
Creator: Wang, Z.
System: The UNT Digital Library
Low temperature y-ray spectrometers based on bulk superconducting and dielectric absorber crystals (open access)

Low temperature y-ray spectrometers based on bulk superconducting and dielectric absorber crystals

Many areas of research rely on the detection of radiation, in the form of single photons or particles. By measuring the photons or particles coming from an object a lot can be learned about the object under study. In some cases there is a simple need to know the number of photons coming from the source. In cases like this a simple counter, like a Geiger-Mueller survey meter, will suffice. In other cases one want to know the spectral distribution of the photons coming from the source. In cases like that a spectrometer is needed that can distinguish between photons with different energies, like a diffraction or transmission grating. The work presented in this thesis focused on the development of a new generation broad band spectrometer that has a high energy resolving power, combined with a high absorption efficiency for photon energies above 10 keV and up to 500 keV. The spectrometers we are developing are based on low-temperature sensors, like superconducting tunnel junctions or transition edge sensors, that are coupled to bulk absorber crystals. We use the low-temperature sensors because they can offer a significant improvement in energy resolving power, compared to conventional spectrometers. We couple the low-temperature sensors …
Date: November 19, 1999
Creator: Netel, H
System: The UNT Digital Library
Sub-micron scale conduction processes on clean surfaces (open access)

Sub-micron scale conduction processes on clean surfaces

Electrical conductance has been measured in-situ in two dimensions in the Ag/Si(111) system as a function of incident adatom flux rate with a 4-probe method. A conductance study in a 3-D conical structure was also made using field emission. For the 2-D study, the origin of conduction is still unclear, as transport by percolating Ag clusters and conduction through the substrate lvia electrons from the film have both been suggested. Experiments varying the flux rate were conducted to decide between the two. Smoother films are expected at lower growth rates which would result in faster drops in the 4-probe voltage; however the 4-probe voltage vs deposition time for various flux rates collapse into a universal curve which indicates that the morphology is not relevant and supports through the substrate. In the 3-D conductance study, a single, lateral micromachined W protrusion on a silica substrate is examined to identify the factors controlling emission in micromachined structures. The I-V characteristics and emission pattern indicate that miniprotrusions of a few hundred Angstroms, much smaller than the nominal radius of the tip, exist on the tip and are responsible for the emission. Adsorption-desorption events from the background environment are the cause of large fluctuations …
Date: June 19, 1995
Creator: Kimberlin, K.
System: The UNT Digital Library
New electrolyte systems for capillary zone electrophoresis of metal cations and non-ionic organic compounds (open access)

New electrolyte systems for capillary zone electrophoresis of metal cations and non-ionic organic compounds

Excellent separations of metal ions can be obtained very quickly by capillary electrophoresis provided a weak complexing reagent is incorporated into the electrolyte to alter the effective mobilities of the sample ions. Indirect photometric detection is possible by also adding a UV-sensitive ion to the electrolyte. Separations are described using phthalate, tartrate, lactate or hydroxyisobutyrate as the complexing reagent. A separation of twenty-seven metal ions was achieved in only 6 min using a lactate system. A mechanism for the separation of lanthanides is proposed for the hydroxyisobutyrate system.
Date: June 19, 1995
Creator: Shi, Y.
System: The UNT Digital Library
Oxidation and creep behavior of Mo*5*Si*3* based materials (open access)

Oxidation and creep behavior of Mo*5*Si*3* based materials

Mo{sub 5}Si{sub 3} shows promise as a high temperature creep resistant material. The high temperature oxidation resistance of Mo{sub 5}Si{sub 3} has been found to be poor, however, limiting its use in oxidizing atmospheres. Undoped Mo{sub 5}Si{sub 3} exhibits mass loss in the temperature range 800{degrees}-1200{degrees}C due to volatilization of molybdenum oxide, indicating that the silica scale does not provide a passivating layer. The addition of boron results in protective scale formation and parabolic oxidation kinetics in the temperature range of 1050{degrees}-1300{degrees}C. The oxidation rate of Mo{sub 5}Si{sub 3} was decreased by 5 orders of magnitude at 1200{degrees}C by doping with less than two weight percent boron. Boron doping eliminates catastrophic {open_quote}pest{close_quote} oxidation at 800{degrees}C. The mechanism for improved oxidation resistance of boron doped Mo{sub 5}Si{sub 3} is due to scale modification by boron.
Date: June 19, 1995
Creator: Meyer, Mitch
System: The UNT Digital Library