86 Matching Results

Results open in a new window/tab.

Studying neutrino oscillations using quasi-elastic events in MINOS (open access)

Studying neutrino oscillations using quasi-elastic events in MINOS

MINOS (Main Injector Neutrino Oscillation Search), is a long baseline neutrino experiment designed to search for neutrino oscillations using two detectors at Fermi National Accelerator Laboratory, IL (Near Detector) and Soudan, MN (Far Detector). It will study {nu}{sub {mu}} {yields} {nu}{sub {tau}} oscillations and make a measurement on the oscillation parameters, {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23}, via a {nu}{sub {mu}} beam made at Fermilab. Charge current neutrino interactions in the MINOS detectors are of three types: quasi-elastic scattering (QEL), resonance scattering (RES) and deep inelastic scattering (DIS). Of these, quasi-elastic scattering leaves the cleanest signal with just one {mu} and one proton in the final state, thus rendering the reconstruction of the neutrino energy more accurate. This thesis will outline a method to separate QEL events from the others in the two detectors and perform a calculation of {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23} using those events. The period under consideration was May 2005 to February 2006. The number of observed quasi-elastic events with energies below 10 GeV was 29, where the expected number was 60 {+-} 3. A fit to the energy distribution of these events gives {Delta}m{sub 23}{sup 2} = 2.91{sub -0.53}{sup +0.49}(stat){sub …
Date: February 1, 2008
Creator: Kumaratunga, Sujeewa Terasita
System: The UNT Digital Library
A measurement of the neutral current neutrino-nucleon elastic cross section at MiniBooNE (open access)

A measurement of the neutral current neutrino-nucleon elastic cross section at MiniBooNE

The neutral current neutrino-nucleon elastic interaction {nu} N {yields} {nu} N is a fundamental process of the weak interaction ideally suited for characterizing the structure of the nucleon neutral weak current. This process comprises {approx}18% of neutrino events in the neutrino oscillation experiment, MiniBooNE, ranking it as the experiment's third largest process. Using {approx}10% of MiniBooNE's available neutrino data, a sample of these events were identified and analyzed to determine the differential cross section as a function of the momentum transfer of the interaction, Q{sup 2}. This is the first measurement of a differential cross section with MiniBooNE data. From this analysis, a value for the nucleon axial mass M{sub A} was extracted to be 1.34 {+-} 0.25 GeV consistent with previous measurements. The integrated cross section for the Q{sup 2} range 0.189 {yields} 1.13 GeV{sup 2} was calculated to be (8.8 {+-} 0.6(stat) {+-} 0.2(syst)) x 10{sup -40} cm{sup 2}.
Date: February 1, 2008
Creator: Cox, David Christopher
System: The UNT Digital Library
Measurement of the Top Quark Mass by Dynamical Likelihood Method using the Lepton + Jets Events with the Collider Detector at Fermilab (open access)

Measurement of the Top Quark Mass by Dynamical Likelihood Method using the Lepton + Jets Events with the Collider Detector at Fermilab

We have measured the top quark mass with the dynamical likelihood method. The data corresponding to an integrated luminosity of 1.7fb{sup -1} was collected in proton antiproton collisions at a center of mass energy of 1.96 TeV with the CDF detector at Fermilab Tevatron during the period March 2002-March 2007. We select t{bar t} pair production candidates by requiring one high energy lepton and four jets, in which at least one of jets must be tagged as a b-jet. In order to reconstruct the top quark mass, we use the dynamical likelihood method based on maximum likelihood method where a likelihood is defined as the differential cross section multiplied by the transfer function from observed quantities to parton quantities, as a function of the top quark mass and the jet energy scale(JES). With this method, we measure the top quark mass to be 171.6 {+-} 2.0 (stat.+ JES) {+-} 1.3(syst.) = 171.6 {+-} 2.4 GeV/c{sup 2}.
Date: February 1, 2008
Creator: Kubo, Taichi
System: The UNT Digital Library
Search for Higgs Boson Production in Association with a W Boson in 1.96-TeV Proton - Antiproton Collisions (open access)

Search for Higgs Boson Production in Association with a W Boson in 1.96-TeV Proton - Antiproton Collisions

We have searched for the Standard Model Higgs boson production in association with a W{sup {+-}} boson. This search is based on the data collected between February 2002 and May 2007, corresponding to an integrated luminosity of 1.9 fb{sup -1} collected by the Collider Detector at Fermilab (CDF) at the Tevatron which is a p{bar p} collider at a center of mass energy 1.96 TeV. W+Higgs channel is one of the most promising channels for the Higgs search at Tevatron in the low Higgs mass region (m{sub H} < 135 GeV/c{sup 2}), where Higgs boson decays into b{bar b} dominantly. The detection of lepton from the W boson decay makes the W+Higgs events much cleaner than the direct Higgs production events which have the largest production cross section. Experimentally we select events with a high p{sub T} lepton, high missing transverse energy and two b-quark jets. This signature is same as for the W+jets background which has a huge cross section. To reduce the W+jets background, b-jet identification algorithms are applied to at least one jet. The expected signal events in 1.9fb{sup -1} are 1.82 {+-} 0.15 and 1.68 {+-} 0.20 for one b-tagged events and two b-tagged events, respectively. …
Date: February 1, 2008
Creator: Masubuchi, Tatusya
System: The UNT Digital Library
Measurement of the B/s0 lifetime in B/s0 --> K+ K- decays (open access)

Measurement of the B/s0 lifetime in B/s0 --> K+ K- decays

A method is presented to simultaneously separate the contributions to a sample of B{sub (s)}{sup 0} {yields} h{sup +}h{sup {prime}-} decays, where h = {pi} or K, and measure the B meson lifetimes in the sample while correcting for the bias in the lifetime distributions due to the hadronic trigger at the CDF experiment. Using 1 fb{sup -1} of data collected at CDF the B{sup 0} lifetime is measured as {tau}{sub B{sup 0}} = 1.558{sub -0.047}{sup +0.050}{sub stat} {+-} 0.028{sub syst} ps, in agreement with the world average measurement. The B{sub s}{sup 0} lifetime in the B{sub s}{sup 0} {yields} K{sup +}K{sup -} decay is measured as {tau}{sub B{sub s}{sup 0} {yields} K{sup +}K{sup -}} = 1.51{sub -0.11}{sup +0.13}{sub stat} {+-} 0.04{sub syst} ps. No difference is observed between the lifetime and other measurements of the average B{sub s}{sup 0} lifetime or the lifetime of the light B{sub s}{sup 0} mass eigenstate determined from B{sub s}{sup 0} {yields} J/{psi}{phi} decays. With the assumptions that B{sub s}{sup 0} {yields} K{sup +}K{sup -} is 100% CP-even and that {tau}{sub B{sub s}{sup 0}} = {tau}{sub B{sup 0}} the width difference in the B{sub s}{sup 0} system is determined as {Delta}{Lambda}{sup CP}/{Lambda} = 0.03{sub …
Date: February 1, 2009
Creator: Pounder, Nicola Louise
System: The UNT Digital Library
A search for W+- H ---> muon-neutrino b anti-b production at the Tevatron (open access)

A search for W+- H ---> muon-neutrino b anti-b production at the Tevatron

All known experimental results on fundamental particles and their interactions can be described to great accuracy by a theory called the Standard Model. In the Standard Model of particle physics, the masses of particles are explained through the Higgs mechanism. The Higgs boson is the only Standard Model particle not discovered yet, and its observation or exclusion is an important test of the Standard Model. While the Standard Model predicts that a Higgs boson should exist, it does not exactly predict its mass. Direct searches have excluded a Higgs with m{sub H} < 114.4 GeV at 95% confidence level, while indirect measurements indicate that the mass should be less than 144 GeV. This analysis looks for W{sup {+-}}H {yields} {mu}{nu}{sub {mu}}b{bar b} in 1 fb{sup -1} of data collected with the D0 detector in p{bar p} collisions with {radical}s = 1.96 TeV. The analysis strategy relies on the tracking, calorimetry and muon reconstruction of the D0 experiment. The signature is a muon, missing transverse energy (E{sub T}) to account for the neutrino and two b-jets. The Higgs mass is reconstructed using the invariant mass of the two jets. Backgrounds are W{sup {+-}}b{bar b}, W{sup {+-}} c{bar c}, W{sup {+-}} + …
Date: February 1, 2008
Creator: Anastasoaie, Carmen Miruna & U., /Nijmegen
System: The UNT Digital Library
Search for third generation vector leptoquarks in 1.96 TeV proton-antiproton collisions (open access)

Search for third generation vector leptoquarks in 1.96 TeV proton-antiproton collisions

The CDF experiment has searched for production of a third generation vector leptoquark (VLQ3) in the di-tau plus di-jet channel using 322 pb{sup -1} of Run II data. We review the production and decay theory and describe the VLQ3 model we have used as a benchmark. We study the analysis, including the data sample, triggers, particle identification, and event selection. We also discuss background estimates and systematic uncertainties. We have found no evidence for VLQ3 production and have set a 95% C.L. upper limit on the pair production cross section {sigma} to 344 fb, and exclude VLQ3 in the mass range m{sub VLQ3} > 317 GeV/c{sup 2}, assuming Yang-Mills couplings and Br(LQ3 {yields} b{tau}) = 1. If theoretical uncertainties on the cross section are taken into account, the results are {sigma} < 353 fb and m{sub VLQ3} > 303 GeV/c{sup 2}. For a VLQ3 with Minimal couplings, the upper limit on the cross section is {sigma} < 493 fb ({sigma} < 554 fb) and the lower limit on the mass is m{sub VLQ3} > 251 GeV/c{sup 2} (m{sub VLQ3} > 235 GeV/c{sup 2}) for the nominal (1{sigma} varied) theoretical expectation.
Date: February 1, 2007
Creator: Akimoto, Takashi
System: The UNT Digital Library
Intense non-relativistic cesium ion beam (open access)

Intense non-relativistic cesium ion beam

The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm.
Date: February 1, 1984
Creator: Lampel, M.C.
System: The UNT Digital Library
Magnetohydrodynamic simulation of solid-deuterium-initiated Z-pinch experiments (open access)

Magnetohydrodynamic simulation of solid-deuterium-initiated Z-pinch experiments

Solid-deuterium-initiated Z-pinch experiments are numerically simulated using a two-dimensional resistive magnetohydrodynamic model, which includes many important experimental details, such as ``cold-start`` initial conditions, thermal conduction, radiative energy loss, actual discharge current vs. time, and grids of sufficient size and resolution to allow realistic development of the plasma. The alternating-direction-implicit numerical technique used meets the substantial demands presented by such a computational task. Simulations of fiber-initiated experiments show that when the fiber becomes fully ionized rapidly developing m=0 instabilities, which originated in the coronal plasma generated from the ablating fiber, drive intense non-uniform heating and rapid expansion of the plasma column. The possibility that inclusion of additional physical effects would improve stability is explored. Finite-Larmor-radius-ordered Hall and diamagnetic pressure terms in the magnetic field evolution equation, corresponding energy equation terms, and separate ion and electron energy equations are included; these do not change the basic results. Model diagnostics, such as shadowgrams and interferograms, generated from simulation results, are in good agreement with experiment. Two alternative experimental approaches are explored: high-current magnetic implosion of hollow cylindrical deuterium shells, and ``plasma-on-wire`` (POW) implosion of low-density plasma onto a central deuterium fiber. By minimizing instability problems, these techniques may allow attainment of higher temperatures …
Date: February 1, 1994
Creator: Sheehey, P. T.
System: The UNT Digital Library
Instability heating of solid-fiber Z pinches (open access)

Instability heating of solid-fiber Z pinches

The Los Alamos High Density Z Pinch-II (HDZP-II) facility is used to study the dynamics of z-pinch plasmas generated from solid fibers of deuterated polyethylene CD{sub 2} with a range in radii of 3--60 {mu}m. HDZP-II is a pulsed-power generator that delivers a current that rises to 700 kA in 100 ns through an inductive load. A multiframe circular schlieren records the evolution of the shape and size of the plasma on seven images taken at 10-ns intervals. These circular-schlieren images show very strong m=0 instability at the onset of current and a rapid radial expansion of the plasma. No higher-order instabilities are observed. An interferometer is used to infer the electron density and electron line density, giving a measure of the fraction of plasma contained within the outline of the circular-schlieren image at one time during the multiframe sequence. A three-channel x-ray crystal-reflection spectrometer provides the time-resolved, spatially-averaged electron temperature. The magnitude of the x-ray emission at these energies also gives qualitative information about the electron temperature and density at late times. A lower bound on the ion temperature is inferred from the particle pressure needed to balance the magnetic field pressure. The ion temperature rose above that of …
Date: February 1, 1994
Creator: Riley, R. A. Jr.
System: The UNT Digital Library
Z + {gamma} cross-section measurement, {sigma}*BR(Z + {gamma}), in the electron channel for p{bar p} collisions at {radical}s = 1.8 TeV, and limits for the ZZ{gamma} and Z{gamma}{gamma} anomalous couplings (open access)

Z + {gamma} cross-section measurement, {sigma}*BR(Z + {gamma}), in the electron channel for p{bar p} collisions at {radical}s = 1.8 TeV, and limits for the ZZ{gamma} and Z{gamma}{gamma} anomalous couplings

The Z + {gamma} cross-section x branching ratio in the electron channel has been measured using the inclusive Z data sample from the CDF 1988--1989 collider run, for which the total integrated luminosity was 4.05 {plus_minus} 0.28 pb{sup {minus}1}. Two Z{gamma} candidates are observed from central photon events with {Delta}R/{sub {gamma}} > 0.7 and E{sub t}{sup {gamma}} > 5.0 GeV. From these events the {sigma} * BR(Z + {gamma}) is measured and compared with SM predictions: {sigma} * BR(Z + {gamma}){sub e} = 6.8{sub {minus}5.7}{sup +5.7}(stat + syst)pb {sigma} * BR(Z + {gamma})SM = 4.7{sub {minus}4.7}{sup +0.7}(stat + syst)pb. From this ZZ{sub {gamma}} cross section measurement limits on the Z{sub {gamma}{gamma}} and couplings for three different choices of compositeness scale {Lambda}{sub Z} are obtained. The experimental sensitivity to the h{sub 30}{sup Z,{gamma}}/h{sub 10}{sup Z,{gamma}} couplings is in the range of {Lambda}{sub Z} {approximately} 450--500 GeV and for the h{sub 40}{sup Z{gamma}}/h{sub 20}{sup Z,{gamma}} couplings {Lambda}{sub Z} {approximately} 300 GeV.
Date: February 1, 1994
Creator: Roach-Bellino, M.
System: The UNT Digital Library
Search for Anomalous WW/WZ {r_arrow} e{nu}jj Production at D0; Busqueda de Produccion Anomala WW/WZ {r_arrow}e{nu}jj en D-Zero (open access)

Search for Anomalous WW/WZ {r_arrow} e{nu}jj Production at D0; Busqueda de Produccion Anomala WW/WZ {r_arrow}e{nu}jj en D-Zero

A search for anomalous WW and WZ production in p{anti p} collisions at {radical}s = 1.8 TeV using the D0 detector at Fermilab is presented. With a data sample of p{anti p} {r_arrow} e{nu}jjX events corresponding to an integrated luminosity of 76.5 {+-} 4.1pb{sup {minus}1}. 399 candidate events were identified, from which 387.1 {+-} 39.8 events were estimated to be background. No deviations from the Standard Model were seen, which predicts 16.2 {+-} 2.7 events. The 95% CL limit on the cross section {sigma}(p{anti p} {r_arrow} W{sup +}W{sup {minus}}X) was calculated to be 93.8 pb. Limits on the CP-conserving anomalous WW{sub {gamma}} and WWZ coupling parameters were obtained from a binned likelihood fit to the transverse momentum spectrum of the W boson. Assuming that the WW{sub {gamma}} and WWZ coupling parameters are equal, the 95% CL limits on the CP-conserving couplings are {minus}0.56 < {Delta}{kappa} < 0.75 (with {lambda} = 0) and {minus}0.42 < {lambda} < 0.44 (with {Delta}{kappa} = 0), for a form factor scale {Lambda}{sub FF} = 1.5 TeV. Limits on other assumptions are also reported. These results were combined with the previous D0 WW, WZ {r_arrow} e{nu}jj published results (13.7 {+-} 0.7 pb{sup {minus}1}), and the limits …
Date: February 1, 1997
Creator: Hernandez, A. S.
System: The UNT Digital Library
An analytic determination of beta poloidal and internal inductance in an elongated tokamak from magnetic probe measurements (open access)

An analytic determination of beta poloidal and internal inductance in an elongated tokamak from magnetic probe measurements

Analytic calculations of the magnetic fields available to magnetic diagnostics are performed for tokamaks with circular and elliptical cross sections. The explicit dependence of the magnetic fields on the poloidal beta and internal inductances is sought. For tokamaks with circular cross sections, Shafranov`s results are reproduced and extended. To first order in the inverse aspect ratio expansion of the magnetic fields, only a specific combination of beta poloidal and internal inductance is found to be measurable. To second order in the expansion, the measurements of beta poloidal and the internal inductance are demonstrated to be separable but excessively sensitive to experimental error. For tokamaks with elliptical cross sections, magnetic measurements are found to determine beta poloidal and the internal inductance separately. A second harmonic component of the zeroth order field in combination with the dc harmonic of the zeroth order field specifies the internal inductance. The internal inductance in hand, measurement of the first order, first harmonic component of the magnetic field then determined beta poloidal. The degeneracy implicit in Shafranov`s result (i.e. that only a combination of beta poloidal and internal inductance is measurable for a circular plasma cross section) reasserts itself as the elliptic results are collapsed to …
Date: February 1, 1992
Creator: Sorci, J. M.
System: The UNT Digital Library
Time-resolved electron thermal conduction by probing of plasma formation in transparent solids with high power subpicosecond laser pulses (open access)

Time-resolved electron thermal conduction by probing of plasma formation in transparent solids with high power subpicosecond laser pulses

This dissertation work includes a series of experimental measurements in a search for better understanding of high temperature (10{sup 4}-10{sup 6}K) and high density plasmas (10{sup 22}-10{sup 24}cm{sup {minus}3}) produced by irradiating a transparent solid target with high intensity (10{sup 13} - 10{sup 15}W/cm{sup 2}) and subpicosecond (10{sup {minus}12}-10{sup {minus}13}s) laser pulses. Experimentally, pump and probe schemes with both frontside (vacuum-plasma side) and backside (plasma-bulk material side) probes are used to excite and interrogate or probe the plasma evolution, thereby providing useful insights into the plasma formation mechanisms. A series of different experiments has been carried out so as to characterize plasma parameters and the importance of various nonlinear processes. Experimental evidence shows that electron thermal conduction is supersonic in a time scale of the first picosecond after laser irradiation, so fast that it was often left unresolved in the past. The experimental results from frontside probing demonstrate that upon irradiation with a strong (pump) laser pulse, a thin high temperature ({approximately}40eV) super-critical density ({approximately}10{sup 23}/cm{sup 3}) plasma layer is quickly formed at the target surface which in turn becomes strongly reflective and prevents further transmission of the remainder of the laser pulse. In the bulk region behind the surface, …
Date: February 1, 1994
Creator: Vu, B. T. V.
System: The UNT Digital Library
A measurement of the t anti-t production cross-section in proton anti-proton collisions at s**(1/2) = 1.96-TeV with the D0 detector at the Tevatron using final states with a muon and jets (open access)

A measurement of the t anti-t production cross-section in proton anti-proton collisions at s**(1/2) = 1.96-TeV with the D0 detector at the Tevatron using final states with a muon and jets

A preliminary measurement of the t{bar t} production cross section at {radical}s = 1.96 TeV is presented. The {mu}-plus-jets final state is analyzed in a data sample of 94 pb{sup -1} and a total of 14 events are selected with a background expectation of 11.7 {+-} 1.9 events. The measurement yields: {sigma}{sub p{bar p} {yields} t{bar t} + X} = 2.4{sub -3.5}{sup +4.2}(stat.){sub -2.6}{sup +2.5}(syst.) {+-} 0.3(lumi.) pb. The analysis, being part of a larger effort to re-observe the top quark in Tevatron Run II data and to measure the production cross section, is combined with results from all available analyses channels. The combined result yields: {sigma}{sub p{bar p}} {yields} t{bar t} + X = 8.1{sub -2.0}{sup +2.2}(stat.){sub -1.4}{sup +1.6}(syst.) {+-} 0.8(lumi.) pb.
Date: February 1, 2004
Creator: Klute, Markus
System: The UNT Digital Library
A Measurement of the Inclusive Z / gamma* --> mu+ mu- Cross-Section and Study of W and Z Events in proton - anti-proton Collisions at D0 (open access)

A Measurement of the Inclusive Z / gamma* --> mu+ mu- Cross-Section and Study of W and Z Events in proton - anti-proton Collisions at D0

A measurement of the inclusive Z/{gamma}* {yields} {mu}{sup +}{mu}{sup -} cross section for M{sub {mu}{mu}} &gt; 40 GeV at {radical}s = 1.96 TeV is presented. The measurement is performed using a data sample corresponding to an integrated luminosity of 147.7 pb{sup -1}, collected with the D0 detector at the Tevatron, Fermilab, between September 2002 and October 2003. A total of 14352 di-muon events are selected and a final result of {sigma}(Z/{gamma}*) = 327.8 {+-} 3.4(stat.) {+-} 8.4(syst.) {+-} 21.3(lumi.) pb is obtained. Correcting the number of di-muon events by a factor of 0.885 {+-} 0.015 for the contribution from pure {gamma}* exchange and Z/{gamma}* interference, the inclusive Z {yields} {mu}{sup +}{mu}{sup -} cross section is found to be: {sigma}(Z) = 290.1 {+-} 3.0(stat.) {+-} 7.4(syst.) {+-} 18.9(lumi.) pb. Finally, comparisons of W and Z boson p{sub T} distributions as measured with D0 during Run I of the Tevatron are compared to HERWIG and MC{at}NLO predictions. Relevant parameters in the simulations are tuned to obtain the best possible fit to the data. An excellent agreement is found for both HERWIG and MC{at}NLO.
Date: February 1, 2005
Creator: Nurse, Emily L.
System: The UNT Digital Library
Study of the production of the sigma b*+- with the CDF detector at the Tevatron (open access)

Study of the production of the sigma b*+- with the CDF detector at the Tevatron

The composition of matter is a topic in which the man has been interested throughout History. Since the introduction of the atom by Democritus in the 5th century BC until the establishment of the Standard Model, our successful theory that contains our current knowledge on the matter and their interactions, it has come a long way trying to solve this fundamental question. The efforts of many of the greatest minds to perform crucial experiments and develop theoretical models have helped to get deeper insight into the origin of the matter. Today we know that indivisible atoms postulated by Democritus are no longer true, and they are actually composed of a nucleus made of protons and neutrons (nucleons) with orbiting electrons through electromagnetic interactions. Also the nucleons are not fundamental particles but are composed of more fundamental ones called quarks. According to the present state of our knowledge, matter is composed of two types of particles: quarks and leptons. Leptons are believed to be fundamental particles and can occur freely in nature. Quarks are also fundamental particles, and there are no free in nature, but are confined to form hadrons. The hadrons may consist of a quark and an antiquark (mesons) …
Date: February 1, 2011
Creator: Calancha Paredes, Constantino & /Madrid, CIEMAT /Madrid U.
System: The UNT Digital Library
Measuring neutrino oscillation parameters using $\nu_\mu$ disappearance in MINOS (open access)

Measuring neutrino oscillation parameters using $\nu_\mu$ disappearance in MINOS

MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters ({Delta}m{sub atm}{sup 2} and sin{sup 2} 2{theta}{sub atm}). The oscillation signal consists of an energy-dependent deficit of {nu}{sub {mu}} interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the {nu}{sub {mu}}-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters …
Date: February 1, 2011
Creator: Backhouse, Christopher James
System: The UNT Digital Library
Observation of the doubly strange b-Baryon Omega(b)- (open access)

Observation of the doubly strange b-Baryon Omega(b)-

This thesis reports the first experimental evidence of the doubly strange b-baryon {Omega}{sub b}{sup -} (ssb) following the decay channel {Omega}{sub b}{sup -} {yields} J/{psi}(1S) {mu}{sup +}{mu}{sup -} {Omega}{sup -} {Lambda} K{sup -} p {pi}{sup -} in p{bar p} collisions at {radical}s = 1.96 Tev. Using approximately 1.3 fb{sup -1} of data collected with the D0 detector at the Fermilab Tevatron Collider, they observe 17.8 {+-} 4.9(stat) {+-} 0.8(syst) {Omega}{sub b}{sup -} signal events at 6.165 {+-} 0.010(stat) {+-} 0.013(syst) GeV/c{sup 2} with a corresponding significance of 5.4 {sigma}, meaning that the probability of the signal coming from a fluctuation in the background is 6.7 x 10{sup -8}. The theoretical model we have to describe what we believe are the building blocks of nature and the interactions between them, is known as Standard Model. The Standard Model is the combination of Electroweak Theory and Quantum Chromodynamics into a single core in the attempt to include all interactions of subatomic particles except those due to gravity in a simple framework. This model has proved highly accurate in predicting certain interactions, but it does not explain all aspects of subatomic particles. For example, it cannot say how many particles there should be …
Date: February 1, 2011
Creator: Hernandez Orduna, de Jesus, Jose
System: The UNT Digital Library
Two-state and two-state plus continuum problems associated with the interaction of intense laser pulses with atoms (open access)

Two-state and two-state plus continuum problems associated with the interaction of intense laser pulses with atoms

Two mathematical methods are utilized (one a form of adiabatic approximation, and the other closely related to the Zener method from collision theory) in order to calculate the probability of three-photon ionization when strong counter propagating pulses are tuned very near a two-photon resonant state. In this case the inverted populations predicted by Grischkowsky and Loy for smooth laser pulses lead to larger ionization probabilities than would be obtained for a square pulse of equal peak power and energy per pulse. The line shape of the ionization probability is also quite unusual in this problem. A sharp onset in the ionization probability occurs as the lasers are tuned through the exact unperturbed two-photon resonance. Under proper conditions, the change can be from a very small value to one near unity. It occurs in a very small frequency range determined by the larger of the residual Doppler effect and the reciprocal duration of the pulse. Thus, the line shape retains a Doppler-free aspect even at power levels such that power broadening would dwarf even the full Doppler effect in the case of a square pulse of equal energy and peak power. The same mathematical methods have been used to calculate line …
Date: February 1, 1977
Creator: Choi, C. W. & Payne, M. G.
System: The UNT Digital Library
Study of the S-wave K(pi) --> Amplitude Using the Decay D+ --> K-pi+pi+ (open access)

Study of the S-wave K(pi) --> Amplitude Using the Decay D+ --> K-pi+pi+

In this work the S-wave component of the K{pi} amplitude from decay of D{sup +} {yields} K{sup -}{pi}{sup +}{pi}{sup +} it is directly measured. The data come from the Fermilab E831/FOCUS experiment. The amplitude measurement is made using the partial wave analysis without any preliminary assumption about the nature of the S-wave component of the K{pi} system. The phase and magnitude of the S-wave amplitude are generic functions to be determined directly through the Dalitz plot fit. For the sake of comparison, our results the same decay is analyzed using the isobar model, which is the standard way to analyze the Dalitz plot. The data fit obtained with the partial wave analysis is better than the data fit from the isobar model. The phase variation with respect to the invariant mass K{pi} is compared with the measurement of the phase {delta}{sub I=1/2}{sup 0} (m{sub K{pi}}) from K{pi} {yields} K{pi} scattering. The difference between both analysis is discussed considering: a difference in the composition of the isospin components I = 1/2 and I = 3/2 of the K{pi} system between D{sup +} decay and the K{pi} {yields} K{pi} scattering; and the final state interaction involving all particles from decay.
Date: February 1, 2007
Creator: Machado, Ana Amelia Bergamini
System: The UNT Digital Library
Theoretical studies of non-Newtonian and Newtonian fluid flow through porous media (open access)

Theoretical studies of non-Newtonian and Newtonian fluid flow through porous media

A comprehensive theoretical study has been carried out on the flow behavior of both single and multiple phase non-Newtonian fluids in porous media. This work is divided into three parts: development of numerical and analytical solutions; theoretical studies of transient flow of non-Newtonian fluids in porous media; and applications of well test analysis and displacement efficiency evaluation to field problems. A fully implicit, integral finite difference model has been developed for simulation of non-Newtonian and Newtonian fluid flow through porous media. Several commonly-used rheological models of power-law and Bingham plastic non-Newtonian fluids have been incorporated in the simulator. A Buckley-Leverett type analytical solution for one-dimensional, immiscible displacement involving non-Newtonian fluids in porous media has been developed. An integral method is also presented for the study of transient flow of Bingham fluids in porous media. In addition, two well test analysis methods have been developed for analyzing pressure transient tests of power-law and Bingham fluids, respectively. Applications are included to demonstrate this new technology. The physical mechanisms involved in immiscible displacement with non-Newtonian fluids in porous media have been studied using the Buckley-Leverett type analytical solution. In another study, an idealized fracture model has been used to obtain some insights into …
Date: February 1, 1990
Creator: Wu, Yu-Shu.
System: The UNT Digital Library
A measurement of the e{sup +}e{sup {minus}} decay width of the Z{sup 0} (open access)

A measurement of the e{sup +}e{sup {minus}} decay width of the Z{sup 0}

This thesis presents a measurement of the partial decay width of the Z{sup 0} to e{sup +}e{sup {minus}} using data recorded by the SLD at the SLAC Linear Collider during the 1992 run. Based on 354 nb{sup {minus}1} of data, the decay width, {Gamma}{sub ee} is measured to be 82.4 {+-} 3.6/3.7 {+-} 0.8 MeV where the first error is statistical and the second is systematic. By combining this measurement of {Gamma}{sub ee} with the SLD measurement of A{sub LR}, the magnitude of the effective vector and axial-vector coupling constants of the electron, {anti g}{sub v}{sup e} and {anti g}{sub a}{sup e}, are determined to be 0.024 {+-} 0.011 and 0.498 {+-} 0.011 respectively.
Date: February 1, 1994
Creator: Yamartino, J. M.
System: The UNT Digital Library
A benchmark analysis of radiation flux distribution for Boron Neutron Capture Therapy of canine brain tumors (open access)

A benchmark analysis of radiation flux distribution for Boron Neutron Capture Therapy of canine brain tumors

Calculations of radiation flux and dose distributions for Boron Neutron Capture Therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly-heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This work describes a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador Retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador Retriever head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for the model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous tissue model. Comparison of the results showed that the peak neutron and photon flux magnitudes were quite …
Date: February 1, 1992
Creator: Moran, J. M.
System: The UNT Digital Library