Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna (open access)

Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna

Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880-1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5percent of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N)<--> LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.
Date: January 31, 2008
Creator: Avenson, Thomas H.; Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong; Ballottari, Matteo et al.
System: The UNT Digital Library
The morphologies of breast cancer cell lines in three-dimensionalassays correlate with their profiles of gene expression (open access)

The morphologies of breast cancer cell lines in three-dimensionalassays correlate with their profiles of gene expression

3D cell cultures are rapidly becoming the method of choice for the physiologically relevant modeling of many aspects of non-malignant and malignant cell behavior ex vivo. Nevertheless, only a limited number of distinct cell types have been evaluated in this assay to date. Here we report the first large scale comparison of the transcriptional profiles and 3D cell culture phenotypes of a substantial panel of human breast cancer cell lines. Each cell line adopts a colony morphology of one of four main classes in 3D culture. These morphologies reflect, at least in part, the underlying gene expression profile and protein expression patterns of the cell lines, and distinct morphologies were also associated with tumor cell invasiveness and with cell lines originating from metastases. We further demonstrate that consistent differences in genes encoding signal transduction proteins emerge when even tumor cells are cultured in 3D microenvironments.
Date: January 31, 2007
Creator: Kenny, Paraic A.; Lee, Genee Y.; Myers, Connie A.; Neve, RichardM.; Semeiks, Jeremy R.; Spellman, Paul T. et al.
System: The UNT Digital Library
Causes of Ocean Surface temperature Changes in Atlantic andPacific Topical Cyclogenesis Regions (open access)

Causes of Ocean Surface temperature Changes in Atlantic andPacific Topical Cyclogenesis Regions

Previous research has identified links between changes in sea surface temperature (SST) and hurricane intensity. We use climate models to study the possible causes of SST changes in Atlantic and Pacific tropical cyclogenesis regions. The observed SST increases in these regions range from 0.32 to 0.67 C over the 20th century. The 22 climate models examined here suggest that century-timescale SST changes of this magnitude cannot be explained solely by unforced variability of the climate system, even under conservative assumptions regarding the magnitude of this variability. Model simulations that include external forcing by combined anthropogenic and natural factors are generally capable of replicating observed SST changes in both tropical cyclogenesis regions.
Date: January 31, 2006
Creator: Santer, B. D.; Wigley, T. M. L.; Gleckler, P. J.; Bonfils, C.; Wehner, M. F.; AchutaRao, K. et al.
System: The UNT Digital Library
Microgrids and Heterogeneous Security, Quality, Reliability, andAvailability (open access)

Microgrids and Heterogeneous Security, Quality, Reliability, andAvailability

This paper describes two stylized alternative visions inpopular currencyof how the power system might evolve to meet futurerequirements for the high quality electricity service that modern digitaleconomies demand, a supergrids paradigm and a dispersed paradigm. Some ofthe economics of the dispersed vision are explored. Economic perspectivesare presented on both the choice of homogeneous universal power qualityupstream in the electricity supply, and also on the extremelyheterogeneous require-ments of end-use loads. Finally, the potential roleof microgrids in delivering heterogeneous power quality is demonstratedby reference to two ongoing microgrid tests in the U.S. andJapan.
Date: January 31, 2007
Creator: Marnay, Chris
System: The UNT Digital Library
HYDROGEN EMBRITTLEMENT OF METALS: A PRIMER FOR THE FAILURE ANALYST (open access)

HYDROGEN EMBRITTLEMENT OF METALS: A PRIMER FOR THE FAILURE ANALYST

Hydrogen reduces the service life of many metallic components. Such reductions may be manifested as blisters, as a decrease in fatigue resistance, as enhanced creep, as the precipitation of a hydride phase and, most commonly, as unexpected, macroscopically brittle failure. This unexpected, brittle fracture is commonly termed hydrogen embrittlement. Frequently, hydrogen embrittlement occurs after the component has been is service for a period of time and much of the resulting fracture surface is distinctly intergranular. Many failures, particularly of high strength steels, are attributed to hydrogen embrittlement simply because the failure analyst sees intergranular fracture in a component that served adequately for a significant period of time. Unfortunately, simply determining that a failure is due to hydrogen embrittlement or some other form of hydrogen induced damage is of no particular help to the customer unless that determination is coupled with recommendations that provide pathways to avoid such damage in future applications. This paper presents qualitative and phenomenological descriptions of the hydrogen damage processes and outlines several metallurgical recommendations that may help reduce the susceptibility of a particular component or system to the various forms of hydrogen damage.
Date: January 31, 2008
Creator: Louthan, M
System: The UNT Digital Library
Effect of Structure on the Storage Characteristics of ManganeseOxide Electrode Materials (open access)

Effect of Structure on the Storage Characteristics of ManganeseOxide Electrode Materials

Eleven types of manganese-containing electrode materialswere subjected to long-term storage at 55oC in 1M LiPF6 ethylenecarbonate/dimethyl carbonate (EC/DMC) solutions. The amount of manganesedissolution observed depended upon the sample surface area, the averageMn oxidation state, the structure, and substitution levels of themanganese oxide. In some cases, structural changes such as solvateformation were exacerbated by the high temperature storage, andcontributed to capacity fading upon cycling even in the absence ofsignificant Mn dissolution. The most stable materials appear to beTi-substituted tunnel structures and mixed metal layered oxides with Mnin the +4 oxidation state.
Date: January 31, 2006
Creator: Park, Yong Joon & Doeff, Marca M.
System: The UNT Digital Library
Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions (open access)

Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions

The decay properties of {sup 290}116 and {sup 291}116, and the dependence of their production cross sections on the excitation energies of the compound nucleus, {sup 293}116, have been measured in the {sup 245}Cm({sup 48}Ca,xn){sup 293-x}116 reaction. These isotopes of element 116 are the decay daughters of element 118 isotopes, which are produced via the {sup 249}Cf+{sup 48}Ca reaction. They performed the element 118 experiment at two projectile energies, corresponding to {sup 297}118 compound nucleus excitation energies of E* = 29.2 {+-} 2.5 and 34.4 {+-} 2.3 MeV. During an irradiation with a total beam dose of 4.1 x 10{sup 19} {sup 48}Ca projectiles, three similar decay chains consisting of two or three consecutive {alpha} decays and terminated by a spontaneous fission (SF) with high total kinetic energy of about 230 MeV were observed. The three decay chains originated from the even-even isotope {sup 294}118 (E{sub {alpha}} = 11.65 {+-} 0.06 MeV, T{sub {alpha}} = 0.89{sub -0.31}{sup +1.07} ms) produced in the 3n-evaporation channel of the {sup 249}Cf+{sup 48}Ca reaction with a maximum cross section of 0.5{sub -0.3}{sup +1.6} pb.
Date: January 31, 2006
Creator: Oganessian, Y. T.; Utyonkov, V. K.; Lobanov, Y. V.; Abdullin, F. S.; Polyakov, A. N.; Sagaidak, R. N. et al.
System: The UNT Digital Library
Dynamics of Propane in Silica Mesopores Formed upon PropyleneHydrogenation over Pt Nanoparticles by Time-Resolved FT-IRSpectroscopy (open access)

Dynamics of Propane in Silica Mesopores Formed upon PropyleneHydrogenation over Pt Nanoparticles by Time-Resolved FT-IRSpectroscopy

Propylene hydrogenation over Pt nanoparticles supported onmesoporous silica type SBA-15 was monitored by time-resolved FT-IRspectroscopy at 23 ms resolution using short propylene gas pulses thatjoined a continuous flow of hydrogen in N2 (1 atm total pressure).Experiments were conducted in the temperature range 323-413 K. Propanewas formed within 100 milliseconds or faster. The CH stretching regionrevealed distinct bands for propane molecules emerging inside thenanoscale channels of the silica support. Spectral analysis gave thedistribution of the propane product between support and surrounding gasphase as function of time. Kinetic analysis showed that the escape ofpropane molecules from the channels occurred within hundreds ofmilliseconds (3.1 + 0.4 s-1 at 383 K). A steady state distribution ofpropane between gas phase and mesoporous support is established as theproduct is swept from the catalyst zone by the continuous flow ofhydrogen co-reactant. This is the first direct spectroscopic observationof emerging products of heterogeneous catalysis on nanoporous supportsunder reaction conditions.
Date: January 31, 2007
Creator: Waslylenko, Walter & Frei, Heinz
System: The UNT Digital Library
Separating Dark Physics from Physical Darkness: Minimalist Modified Gravity vs. Dark Energy (open access)

Separating Dark Physics from Physical Darkness: Minimalist Modified Gravity vs. Dark Energy

The acceleration of the cosmic expansion may be due to a new component of physical energy density or a modification of physics itself. Mapping the expansion of cosmic scales and the growth of large scale structure in tandem can provide insights to distinguish between the two origins. Using Minimal Modified Gravity (MMG) - a single parameter gravitational growth index formalism to parameterize modified gravity theories - we examine the constraints that cosmological data can place on the nature of the new physics. For next generation measurements combining weak lensing, supernovae distances, and the cosmic microwave background we can extend the reach of physics to allow for fitting gravity simultaneously with the expansion equation of state, diluting the equation of state estimation by less than 25percent relative to when general relativity is assumed, and determining the growth index to 8percent. For weak lensing we examine the level of understanding needed of quasi- and nonlinear structure formation in modified gravity theories, and the trade off between stronger precision but greater susceptibility to bias as progressively more nonlinear information is used.
Date: January 31, 2007
Creator: Huterer, Dragan & Linder, Eric V.
System: The UNT Digital Library
Harmonic resolution as a holographic quantum number (open access)

Harmonic resolution as a holographic quantum number

The Bekenstein bound takes the holographic principle into the realm of flat space, promising new insights on the relation of non-gravitational physics to quantum gravity. This makes it important to obtain a precise formulation of the bound. Conventionally, one specifies two macroscopic quantities, mass and spatial width, which cannot be simultaneously diagonalized. Thus, the counting of compatible states is not sharply defined. The resolution of this and other formal difficulties leads naturally to a definition in terms of discretized light-cone quantization. In this form, the area difference specified in the covariant bound converts to a single quantum number, the harmonic resolution K. The Bekenstein bound then states that the Fock space sector with K units of longitudinal momentum contains no more than exp(2 pi^2 K) independent discrete states. This conjecture can be tested unambiguously for a given Lagrangian, and it appears to hold true for realistic field theories, including models arising from string compactifications. For large K, it makes contact with more conventional but less well-defined formulations.
Date: January 31, 2004
Creator: Bousso, Raphael
System: The UNT Digital Library
Turbulent Equipartition Theory of Toroidal Momentum Pinch (open access)

Turbulent Equipartition Theory of Toroidal Momentum Pinch

The mode-independet part of magnetic curvature driven turbulent convective (TuroCo) pinch of the angular momentum density [Hahm et al., Phys. Plasmas 14,072302 (2007)] which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of "magnetically weighted angular momentum density," nmi U|| R⁄B2, and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustratd that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms which exist in a simpler geometry.
Date: January 31, 2008
Creator: Hahm, T. S.; Diamond, P. H.; Gurcan, O. D. & Rewaldt, G.
System: The UNT Digital Library
Thenature of marbled Terra Sigillata slips: a combined mu XRF and mu XRD investigation (open access)

Thenature of marbled Terra Sigillata slips: a combined mu XRF and mu XRD investigation

In addition to the red terra sigillata production, the largest Gallic workshop (La Graufesenque) made a special type of terra sigillata, called 'marbled' by the archaeologists. Produced exclusively on this site, this pottery is characterized by a surface finish made of a mixture of yellow and red slips. Because the two slips are intimately mixed, it is difficult to obtain the precise composition of one of the two constituents without contamination by the other. In order to obtain very precise correlation at the appropriate scale between the color aspect and the element and mineralogical phase distributions in the slip, combined electron microprobe, x-ray micro spectroscopies and micro diffraction on cross sectional samples were performed. The aim is to discover how potters were able to produce this unique type of terra sigillata and especially this slip showing an intense yellow color. Results show that the yellow component of marbled sigillata was made from a titanium-rich clay preparation. The color is related to the formation of a pseudobrookite (TiFe2O5) phase in the yellow part of the slip, the main characteristics of that structure being considered nowadays as essential for the fabrication of stable yellow ceramic pigments. Its physical properties such as high …
Date: January 31, 2009
Creator: Leon, Yoanna; Sciau, Philippe; Goudeau, Philippe; Tamura, Nobumichi; Webb, Sam & Mehta, Apurva
System: The UNT Digital Library
SUNDIALS Equation Solvers (open access)

SUNDIALS Equation Solvers

None
Date: January 31, 2007
Creator: Hindmarsh, A C & Serban, R
System: The UNT Digital Library
The Hadronic Models for Cosmic Ray Physics: the FLUKA Code Solutions (open access)

The Hadronic Models for Cosmic Ray Physics: the FLUKA Code Solutions

FLUKA is a general purpose Monte Carlo transport and interaction code used for fundamental physics and for a wide range of applications. These include Cosmic Ray Physics (muons, neutrinos, EAS, underground physics), both for basic research and applied studies in space and atmospheric flight dosimetry and radiation damage. A review of the hadronic models available in FLUKA and relevant for the description of cosmic ray air showers is presented in this paper. Recent updates concerning these models are discussed. The FLUKA capabilities in the simulation of the formation and propagation of EM and hadronic showers in the Earth's atmosphere are shown.
Date: January 31, 2007
Creator: Battistoni, G.; Garzelli, M.V.; Gadioli, E.; Muraro, S.; Sala, P.R.; Fasso, A. et al.
System: The UNT Digital Library
Mechanical and Thermal Properties of Ultra-High Carbon Steel Containing Aluminum (open access)

Mechanical and Thermal Properties of Ultra-High Carbon Steel Containing Aluminum

The properties of ultrahigh carbon steels (UHCS) are strongly influenced by aluminum additions. Hardness studies of quenched UHCS-Al alloys reveal that the temperature for the start of transformation increases with increases in aluminum content. It is shown that this change is a function of the atomic percent of solute and of the valence state when comparisons are made with UHCSs containing silicon and tin as solutes. The thermal expansion of UHCSs with dilute aluminum additions shows no discontinuity in the vicinity of the ferrite-austenite transformation temperature. This is the result of a three phase region of ferrite, carbides and austenite. The slope of the expansion curve is higher in the austenite range than in the ferrite range as a result of the dissolution of carbon in austenite with temperature. Processing to achieve a fine grain size in UHCS-Al alloys was principally by hot and warm working (HWW) followed by isothermal warm working (IWW). The high temperature mechanical properties of a UHCS-10Al-1.5C material show nearly Newtonian-viscous behavior at 900 to 1000 C. Tensile elongations of 1200% without failure were achieved in the 1.5%C material. The high oxidation corrosion resistance of the UHCS-10Al materials is described.
Date: January 31, 2006
Creator: Syn, C K; Lesuer, D R; Goldberg, A; Tsai, H & Sherby, O D
System: The UNT Digital Library
LSM-YSZ Cathodes with Reaction-Infiltrated Nanoparticles (open access)

LSM-YSZ Cathodes with Reaction-Infiltrated Nanoparticles

None
Date: January 31, 2006
Creator: Lu, Chun; Sholklapper, Tal Z.; Jacobson, Craig P.; Visco, StevenJ. & DeJonghe, Lutgard C.
System: The UNT Digital Library
The c/a Ratio in Quenched Fe-C and Fe-N steels - a Heuristic Story (open access)

The c/a Ratio in Quenched Fe-C and Fe-N steels - a Heuristic Story

The body-centered tetragonal (BCT) structure in quenched Fe-C steels is usually illustrated to show a linear change in the c and a axes with an increase in carbon content from 0 to 1.4%C. The work of Campbell and Fink, however, shows that this continuous linear relationship is not correct. Rather, it was shown that the body-centered-cubic (BCC) structure is the stable structure from 0 to 0.6 wt%C with the c/a ratio equal to unity. An abrupt change in the c/a ratio to 1.02 occurs at 0.6 wt%C. The BCT structure forms, and the c/a ratio increases with further increase in carbon content. An identical observation is noted in quenched Fe-N steels. This discontinuity is explained by a change in the transformation process. It is proposed that a two-step transformation process occurs in the low carbon region, with the FCC first transforming to HCP and then from HCP to BCC. In the high carbon region, the FCC structure transforms to the BCT structure. The results are explained with the Engel-Brewer theory of valence and crystal structure of the elements. An understanding of the strength of quenched iron-carbon steels plays a key role in the proposed explanation of the c/a anomaly based …
Date: January 31, 2006
Creator: Sherby, O; Wadsworth, J; Lesuer, D & Syn, C
System: The UNT Digital Library
INHIBITION OF STRESS CORROSION CRACKING OF CARBON STEEL STORAGE TANKS AT HANFORD (open access)

INHIBITION OF STRESS CORROSION CRACKING OF CARBON STEEL STORAGE TANKS AT HANFORD

The stress corrosion cracking (SCC) behavior of A537 tank steel was investigated in a series of environments designed to simulate the chemistry of legacy nuclear weapons production waste. Tests consisted of both slow strain rate tests using tensile specimens and constant load tests using compact tension specimens. Based on the tests conducted, nitrite was found to be a strong SCC inhibitor. Based on the test performed and the tank waste chemistry changes that are predicted to occur over time, the risk for SCC appears to be decreasing since the concentration of nitrate will decrease and nitrite will increase.
Date: January 31, 2007
Creator: BOOMER, K.D.
System: The UNT Digital Library
Space-time thermodynamics of the glass transition (open access)

Space-time thermodynamics of the glass transition

We consider the probability distribution for the fluctuations in the dynamical action of glass forming materials. We argue that the so-called glass transition is a manifestation of low action tails in these distributions where the entropy of trajectory space is sub-extensive in time. These low action tails are a consequence of dynamic heterogeneity and an indication of phase coexistence in trajectory space. The glass transition, where the system falls out of equilibrium, is then an order-disorder phenomenon in space-time occurring at a temperature T{sub g} which is a weak function of measurement time. We illustrate our perspective ideas with facilitated lattice models, and note how these ideas apply more generally.
Date: January 31, 2005
Creator: Merolle, Mauro; Garrahan, Juan P. & Chandler, David
System: The UNT Digital Library
ON THE ANODIC POLARIZATION BEHAVIOR OF CARBON STEEL IN HANFORD NUCLEAR WASTES (open access)

ON THE ANODIC POLARIZATION BEHAVIOR OF CARBON STEEL IN HANFORD NUCLEAR WASTES

The effect of the important chemical constituents in the Hanford nuclear waste simulant on the anodic behavior of carbon steel was studied. Specifically, the effect of pH, nitrite concentration, nitrite/nitrate concentration ratios, total organic carbon and the chloride concentration on the open circuit potential, pitting potential and repassivation potential was evaluated. It was found that pH adjusting, although capable of returning the tank chemistry back to specification, did not significantly reduce the corrosivity of the stimulant compared to the present condition. Nitrite was found to be a potent inhibitor for carbon steel. A critical concentration of approximately 1.2M appeared to be beneficial to increase the difference of repassivation potential and open circuit potential considerably and thus prevent pitting corrosion from occurring. No further benefit was gained when increasing nitrite concentration to a higher level. The organic compounds were found to be weak inhibitors in the absence of nitrite and the change of chloride from 0.05M to 0.2M did not alter the anodic behavior dramatically.
Date: January 31, 2007
Creator: BOOMER, K.D.
System: The UNT Digital Library
Filtering Algebraic Multigrid and Adaptive Strategies (open access)

Filtering Algebraic Multigrid and Adaptive Strategies

Solving linear systems arising from systems of partial differential equations, multigrid and multilevel methods have proven optimal complexity and efficiency properties. Due to shortcomings of geometric approaches, algebraic multigrid methods have been developed. One example is the filtering algebraic multigrid method introduced by C. Wagner. This paper proposes a variant of Wagner's method with substantially improved robustness properties. The method is used in an adaptive, self-correcting framework and tested numerically.
Date: January 31, 2006
Creator: Nagel, A; Falgout, R D & Wittum, G
System: The UNT Digital Library
LSM-YSZ Cathodes with Reaction-Infiltrated Nanoparticles (open access)

LSM-YSZ Cathodes with Reaction-Infiltrated Nanoparticles

To improve the LSM-YSZ cathode performance of intermediate temperature solid oxide fuel cells (SOFCs), Sm0.6Sr0.4CoO3-sigma (SSC) perovskite nanoparticles are incorporated into the cathodes by a reaction-infiltration process. The SSC particles are {approx}20 to 80nm in diameter, and intimately adhere to the pore walls of the preformed LSM-YSZ cathodes. The SSC particles dramatically enhance single-cell performance with a 97 percent H2+3 percent H2O fuel, between 600 C and 800 C. Consideration of a simplified TPB (triple phase boundary) reaction geometry indicates that the enhancement may be attributed to the high electrocatalytic activity of SSC for electrochemical reduction of oxygen in a region that can be located a small distance away from the strict triple phase boundaries. The implication of this work for developing high-performance electrodes is also discussed.
Date: January 31, 2006
Creator: Lu, Chun; Sholklapper, Tal Z.; Jacobson, Craig P.; Visco, StevenJ. & De Jonghe, Lutgard C.
System: The UNT Digital Library
The Cold and Dark Process at the Savannah River Site (open access)

The Cold and Dark Process at the Savannah River Site

The deactivation and decommissioning (D&D) of a facility exposes D&D workers to numerous hazards. One of the more serious hazards is coming into contact to hazardous energy sources (e.g. electrical, pressurized steam). At the Savannah River Site (SRS) a formal process for identifying and eliminating sources of hazardous energy was developed and is called ''Cold & Dark''. Several ''near miss'' events involving cutting of energized conductors during D&D work in buildings thought to be isolated identified the need to have a formal process to identify and isolate these potentially hazardous systems. This process was developed using lessons learned from D&D activities at the Rocky Flats Environmental Technology Site (Rocky Flats) in Colorado. The Cold & Dark process defines an isolation boundary (usually a building perimeter) and then systematically identifies all of the penetrations through this boundary. All penetrations that involve hazardous energy sources are then physically air-gapped. The final product is a documented declaration of isolation performed by a team involving operations, engineering, and project management. Once the Cold & Dark declaration is made for a building work can proceed without the usual controls used in an operational facility (e.g. lockout/tagout, arc flash PPE). It is important to note that …
Date: January 31, 2007
Creator: Gilmour, J.; William Austin, W. & Cathy Sizemore, C.
System: The UNT Digital Library
Facility Deactivation and Decommissioning at the Savannah River Site (open access)

Facility Deactivation and Decommissioning at the Savannah River Site

In February 2002, the U.S. Department of Energy initiated actions to expedite Cleanup, focus on significant and early risk reduction, and reduce costs at the Savannah River Site (SRS). In response SRS started on a project focused on completing the decommissioning of inactive facilities in T, D, and M Areas, areas that on the perimeter of the Site, by the end of 2006. In June 2003, the Department of Energy Savannah River Operations Office (DOE-SR), the South Carolina Department of Health and Environmental Control (SCDHEC), and the Environmental Protection Agency, Region 4 (EPA-4) endorsed a Memorandum of Agreement (MOA) concerning cleanup at the Savannah River Site (SRS). The vision of the Agreement is that SRS will reduce its operations footprint to establish a buffer zone at the perimeter if the Site, while the central core area of the Site will be reserved for continuing or future long-term operations. DOE-SR, EPA-4, and SCDHEC agreed that establishing this buffer zone and appropriately sequencing environmental restoration and decommissioning activities can lead to greater efficiency and accelerate completion of entire site areas. This vision is embodied in the concept of Area Completion--which integrated operations, deactivation and decommissioning (D&D), and soils and groundwater cleanup into …
Date: January 31, 2007
Creator: Gilmour, J.; William Austin, W. & Cathy Sizemore, C.
System: The UNT Digital Library