Resource Type

3 Matching Results

Results open in a new window/tab.

Laser-generated metallic hydrogen (open access)

Laser-generated metallic hydrogen

Hydrogen reaches the minimum conductivity of a metal at 140 GPa (1.4 Mbar) and 3000 K. These conditions were achieved using a two-stage light-gas gun. The authors have investigated computationally the use of a laser-heated hohlraum to shock compress hydrogen to these conditions in samples sufficiently thin that the metallic fluid might be quenched metastably on release of dynamic pressure. A configuration was found such that the duration of maximum pressure is sufficiently long that the hydrogen film cools by thermal conduction before pressure is released.
Date: August 27, 1999
Creator: Nellis, W J & Pollaine, S M
System: The UNT Digital Library
Lawrence Livermore National Laboratory hot spot mobile laboratory (open access)

Lawrence Livermore National Laboratory hot spot mobile laboratory

Gross alpha/beta/tritium liquid The Hot Spot Mobile Laboratory is an asset used to analyze samples (some high hazard) from the field. Field laboratories allow the quick turnaround of samples needed to establish weapon condition and hazard assessment for the protection of responders and the public. The Hot Spot Lab is configured to fly anywhere in the world and is staffed by expert scientists and technicians from Lawrence Livermore National Laboratory who perform similar functions in their routine jobs. The Hot Spot Team carries sample control kits to provide responding field teams with the procedures, tools, and equipment for sample collection and field measurements. High-hazard samples brought back from the field are prepared for analysis in HEPA-filtered gloveboxes staffed by technicians from LLNL's Plutonium Facility. The samples are passed on to the Mobile Laboratory which carries a variety of radiological and chemical analytical equipment in portable configuration for use in the field. Equipment and personnel can also deploy special assets to local hospitals or the field for detection of plutonium in a lung or wound. Quick assessment of personnel contamination is essential for time-critical medical intervention. In addition to pulling the trailer, the Hot Spot Truck also stores some of the …
Date: August 27, 1999
Creator: Buddemeier, B.
System: The UNT Digital Library
Simulation of intense heating and shock hydrodynamics in free-moving liquid targets. (open access)

Simulation of intense heating and shock hydrodynamics in free-moving liquid targets.

Recently, significant interest has focused on the use of free or open liquid-metal targets flowing with high velocities in various nuclear and high-energy physics applications such as the ISOLDE and muon collider projects. This is because the heat generated in solid targets due to beam bombardment cannot be removed easily and the resulting thermal shock damage is a serious problem. The behavior of a free-moving liquid mercury or gallium jet due to a proton beam deposition in a strong magnetic field has been modeled and analyzed for the muon collider project. Free liquid-metal jets offer significant advantages over conventional solid targets, particularly for the more demanding and challenging high-power applications.
Date: August 27, 1999
Creator: Hassanein, A.
System: The UNT Digital Library