Viscous liquid barrier demonstration at the Brookhaven National Laboratory Linac Isotope Producer (open access)

Viscous liquid barrier demonstration at the Brookhaven National Laboratory Linac Isotope Producer

Groundwater monitoring has detected tritium ({sup 3}H) and {sup 22}Na contamination down gradient from the Brookhaven LINAC Isotope Producer (BLIP), located at Brookhaven National Laboratory (BNL). Site characterization studies indicate that the BLIP is the source of contamination. The highest measured values for {sup 3}H were 52,400 pCi/L recorded less than 100 feet south (down gradient) of the BLIP facility. The BLIP produces radioisotopes that are crucial in nuclear medicine for both research and clinical use. The BLIP also supports research on diagnostic and therapeutic radiopharmaceuticals. During operation a proton beam impinges a target (typically salts encapsulated in stainless steel) to produce the required radioisotopes. The proton beam is completely absorbed prior to reaching the soils surrounding the target shaft. However, secondary neutrons are produced that reach the soil causing activation products to form. Among the longer-lived isotopes of concern are tritium and {sup 22}Na. Both of these isotopes have the potential to negatively impact the groundwater below the BLIP. Several corrective actions have been implemented at the BLIP facility in response to tritium detection in the groundwater. The first actions were to improve surface water management (e.g. storm water down spouts) and the installation of a gunite cap around …
Date: February 27, 2000
Creator: Heiser, J. H.; Sullivan, T.; Ludewig, H.; Brower, J.; North-Abbott, M.; Manchester, K. et al.
System: The UNT Digital Library
Rapid Measurement of Neutron Dose Rate for Transport Index (open access)

Rapid Measurement of Neutron Dose Rate for Transport Index

A newly available neutron dose equivalent remmeter with improved sensitivity and energy response has been put into service at Rocky Flats Environmental Technology Site (RFETS). This instrument is being used to expedite measurement of the Transport Index and as an ALARA tool to identify locations where slightly elevated neutron dose equivalent rates exist. The meter is capable of measuring dose rates as low as 0.2 {mu}Sv per hour (20 {mu}rem per hour). Tests of the angular response and energy response of the instrument are reported. Calculations of the theoretical instrument response made using MCNP{trademark} are reported for materials typical of those being shipped.
Date: February 27, 2000
Creator: Morris, R. L.
System: The UNT Digital Library
Hourly Simulation of Grid-Connected PV Systems Using Realistic Building Loads (Preprint) (open access)

Hourly Simulation of Grid-Connected PV Systems Using Realistic Building Loads (Preprint)

This is one of two companion papers that describe the ENERGY-10 PV design tool computer simulation program. The other paper is titled ''ENERGY-10 Photovoltaics: A New Capability.'' Whereas this paper focuses on the PV aspects of the program, the companion paper focuses on the implementation method. The case study in this paper is a commercial building application, whereas the case study in the companion paper is a residential application with an entirely different building load characteristic. Together they provide a balanced view.
Date: February 27, 2001
Creator: Balcomb, J. D.; Hayter, S. J. & Weaver, N. L.
System: The UNT Digital Library
Silicon polymer encapsulation of high level calcine waste for transportation or disposal (open access)

Silicon polymer encapsulation of high level calcine waste for transportation or disposal

Engineers at the Idaho National Engineering and Environmental Laboratory (INEEL) are investigating the use of a proprietary silicon-polymer to encapsulate high-level calcine waste stored at the INEEL's Idaho Nuclear Technology and Engineering Center (INTEC). The silicon-polymer-encapsulated waste may be suitable for direct disposal at a radioactive waste disposal facility or for transport to an offsite melter for further processing. In connection with silicon-polymer encapsulation, the University of Akron, under special arrangement with Orbit Technologies, the originator of the Polymer Encapsulation Technology (PET), has studied a simulated waste material from INTEC called pilot-scale calcine that contains hazardous materials but no radioactive isotopes. In this study, Toxicity Characteristic Leaching Procedure (TCLP) and Materials Characterization Center Test 1P were performed to test the waste form for disposal. In addition, a maximum waste loading was established for transporting the calcine waste at INTEC to an offsite melter. For this maximum waste loading, compressive strength testing, 10-m drop testing, melt testing, and a Department of Transportation (DOT) oxidizer test were performed.
Date: February 27, 2000
Creator: Loomis, G. G.
System: The UNT Digital Library
Mercury removal at Idaho National Engineering and Environmental Laboratory's New Waste Calcining Facility (open access)

Mercury removal at Idaho National Engineering and Environmental Laboratory's New Waste Calcining Facility

Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended.
Date: February 27, 2000
Creator: Ashworth, S. C.
System: The UNT Digital Library
USE OF PERFLUOROCARBON TRACER (PFT) TECHNOLOGY FOR SUBSURFACE BARRIER INTEGRITY VERIFICATION AT THE WALDO TEST SITE (open access)

USE OF PERFLUOROCARBON TRACER (PFT) TECHNOLOGY FOR SUBSURFACE BARRIER INTEGRITY VERIFICATION AT THE WALDO TEST SITE

Researchers from Brookhaven National Laboratory (BNL) tested perfluorocarbon (PFT) gas tracers on a subsurface barrier with known flaws at the Waldo test facility [operated by Science and Engineering Associates, Inc (SEA)]. The tests involved the use of five unique PFT tracers with a different tracer injected along the interior of each wall of the barrier. A fifth tracer was injected exterior to the barrier to examine the validity of diffusion controlled transport of the PFTs. The PFTs were injected for three days at a nominal flow rate of 15 cm{sup 3}/min and a concentrations in the range of a few hundred ppm. Approximately 65 liters of air laced with tracer was injected for each tracer. The tracers were able to accurately detect the presence of the engineered flaws. Two flaws were detected on the north and east walls and lane flaw was detected on the south and west walls. In addition, one non-engineered flaw at the seam between the north and east walls was also detected. The use of multiple tracers provided independent confirmation of the flaws and permitted a distinction between tracers arriving at a monitoring port after being released from a nearby flaw and non-engineered flaws. The PFTs …
Date: February 27, 2000
Creator: Sullivan, T.; Heiser, J.; Senum, G. & Millian, L.
System: The UNT Digital Library
High Resolution Radionuclide Imaging Using Focusing Gamma-Ray Optics (open access)

High Resolution Radionuclide Imaging Using Focusing Gamma-Ray Optics

Significant effort is being devoted to the development of noninvasive imaging systems that allow in vivo assessment of biological and biomolecular interactions in mice and other small animals. Although single-photon emission tomography (SPECT) and positron emission tomography (PET) are well-matched to the study of physiological function in small animals, the spatial resolutions of 1-2 mm currently achievable with these techniques limits the types of research possible. For this reason, we are developing a small animal radionuclide imaging system using grazing incidence optics to focus the low-energy gamma-rays emitted by {sup 125}I, {sup 95m}Tc, {sup 96}Tc, and {sup 99m}Tc. We compare this approach to the more traditional use of absorptive collimation.
Date: February 27, 2004
Creator: Pivovaroff, Michael; Craig, William; Ziock, Klaus; Barber, William; Funk, Tobias; Hasegawa, Bruce et al.
System: The UNT Digital Library
Experience From Two Small Quantity RH-TRU Waste Sites in Navigating Through an Evolving Regulatory Landscape (open access)

Experience From Two Small Quantity RH-TRU Waste Sites in Navigating Through an Evolving Regulatory Landscape

Two small quantity transuranic (TRU) waste generator sites have gained considerable experience in navigating through a changing regulatory landscape in their efforts to remove the TRU waste from their sites and proceed with site remediation. The Battelle Columbus Laboratories Decommissioning Project (BCLDP) has the objectives of decontaminating nuclear research buildings and associated grounds and remediating to a level of residual contamination allowing future use without radiological restrictions. As directed by Congress, BCLDP must complete decontamination and decommissioning activities by the end of Fiscal Year (FY) 2006. This schedule requires the containerization of all TRU waste in 2002. BCLDP will generate a total of approximately 27 cubic meters (m3) of remote-handled (RH) TRU waste. Similarly, the Energy Technology Engineering Center (ETEC) is scheduled to close in 2006 pursuant to an agreement between the U.S. Department of Energy (DOE) and Boeing Canoga Park, the management and operating contractor for ETEC. ETEC had 11.0 m3 of RH-TRU and contact-handled (CH) TRU waste in storage, with the requirement to remove this waste in 2002 in order to meet their site closure schedule. The individual milestones for BCLDP and ETEC necessitated the establishment of site-specific programs to direct packaging and characterization of RH-TRU waste before …
Date: February 27, 2003
Creator: Biedscheid, Jennifer; Devarakonda, Murthy; Eide, Jim & Kneff, Dennis
System: The UNT Digital Library