Resource Type

Month

The Energy Diameter Effect (open access)

The Energy Diameter Effect

Various relations for the detonation energy and velocity as they relate to the inverse radius of the cylinder are explored. The detonation rate-inverse slope relation seen in reactive flow models can be used to derive the familiar Eyring equation. Generalized inverse radii can be shown to fit large quantities of cylinder and sphere results. A rough relation between detonation energy and detonation velocity is found from collected JWL values. Cylinder test data for ammonium nitrate mixes down to 6.35 mm radii are presented, and a size energy effect is shown to exist in the Cylinder test data. The relation that detonation energy is roughly proportional to the square of the detonation velocity is shown by data and calculation.
Date: April 20, 2007
Creator: Souers, P; Vitello, P; Garza, R & Hernandez, A
System: The UNT Digital Library
Spin Spectrometer at the ALS and APS (open access)

Spin Spectrometer at the ALS and APS

A spin-resolving photoelectron spectrometer, the"Spin Spectrometer," has been designed and built. It has been utilized at both the Advanced Light Source in Berkeley, CA, and the Advanced Photon Source in Argonne, IL. Technical details and an example of experimental results are presented here.
Date: April 20, 2007
Creator: Laboratory, Lawrence Livermore National; Missouri-Rolla, University of; Technologies, Boyd; Morton, Simon A; Morton, Simon A; Tobin, James G et al.
System: The UNT Digital Library
Speech recognition systems on the Cell Broadband Engine (open access)

Speech recognition systems on the Cell Broadband Engine

In this paper we describe our design, implementation, and first results of a prototype connected-phoneme-based speech recognition system on the Cell Broadband Engine{trademark} (Cell/B.E.). Automatic speech recognition decodes speech samples into plain text (other representations are possible) and must process samples at real-time rates. Fortunately, the computational tasks involved in this pipeline are highly data-parallel and can receive significant hardware acceleration from vector-streaming architectures such as the Cell/B.E. Identifying and exploiting these parallelism opportunities is challenging, but also critical to improving system performance. We observed, from our initial performance timings, that a single Cell/B.E. processor can recognize speech from thousands of simultaneous voice channels in real time--a channel density that is orders-of-magnitude greater than the capacity of existing software speech recognizers based on CPUs (central processing units). This result emphasizes the potential for Cell/B.E.-based speech recognition and will likely lead to the future development of production speech systems using Cell/B.E. clusters.
Date: April 20, 2007
Creator: Liu, Y.; Jones, H.; Vaidya, S.; Perrone, M.; Tydlitat, B. & Nanda, A.
System: The UNT Digital Library
Benchmark Measurements of the Ionization Balance of Non-LTE Gold (open access)

Benchmark Measurements of the Ionization Balance of Non-LTE Gold

The authors present a series of benchmark measurements of the ionization balance of well characterized gold plasmas with and without external radiation fields at electron densities near 10{sup 21} cm{sup -3} and various electron temperatures spanning the range 0.8 to 2.4 keV. They have analyzed time- and space-resolved M-shell gold emission spectra using a sophisticated collisional-radiative model with hybrid level structure, finding average ion changes <Z> ranging from 42 to 50. At the lower temperatures, the spectra exhibit significant sensitivity to external radiation fields and include emission features from complex N-shell ions not previously studied at these densities. The measured spectra and inferred <Z> provide a stringent test for non-local thermodynamic equilibrium (non-LTE) models of complex high-Z ions.
Date: April 20, 2007
Creator: Heeter, R. F.; Hansen, S. B.; Fournier, K. B.; Foord, M. E.; Froula, D. H.; Mackinnon, A. J. et al.
System: The UNT Digital Library
Molecular beam epitaxy of InN dots on nitrided sapphire (open access)

Molecular beam epitaxy of InN dots on nitrided sapphire

A series of self-assembled InN dots are grown by radio frequency (RF) plasma-assisted molecular beam epitaxy (MBE) directly on nitrided sapphire. Initial nitridation of the sapphire substrates at 900 C results in the formation of a rough AlN surface layer, which acts as a very thin buffer layer and facilitates the nucleation of the InN dots according to the Stranski-Krastanow growth mode, with a wetting layer of {approx}0.9 nm. Atomic force microscopy (AFM) reveals that well-confined InN nanoislands with the greatest height/width at half-height ratio of 0.64 can be grown at 460 C. Lower substrate temperatures result in a reduced aspect ratio due to a lower diffusion rate of the In adatoms, whereas the thermal decomposition of InN truncates the growth at T>500 C. The densities of separated dots vary between 1.0 x 10{sup 10} cm{sup -2} and 2.5 x 10{sup 10} cm{sup -2} depending on the growth time. Optical response of the InN dots under laser excitation is studied with apertureless near-field scanning optical microscopy and photoluminescence spectroscopy, although no photoluminescence is observed from these samples. In view of the desirable implementation of InN nanostructures into photonic devices, the results indicate that nitrided sapphire is a suitable substrate for …
Date: April 20, 2007
Creator: Romanyuk, Yaroslav E.; Dengel, Radu-Gabriel; Stebounova, LarissaV. & Leone, Stephen R.
System: The UNT Digital Library
A monolithic time stretcher for precision time recording (open access)

A monolithic time stretcher for precision time recording

Identifying light mesons which contain only up/down quarks (pions) from those containing a strange quark (kaons) over the typical meter length scales of a particle physics detector requires instrumentation capable of measuring flight times with a resolution on the order of 20ps. In the last few years a large number of inexpensive, multi-channel Time-to-Digital Converter (TDC) chips have become available. These devices typically have timing resolution performance in the hundreds of ps regime. A technique is presented that is a monolithic version of ``time stretcher'' solution adopted for the Belle Time-Of-Flight system to address this gap between resolution need and intrinsic multi-hit TDC performance.
Date: April 20, 2007
Creator: Varner, Gary S.
System: The UNT Digital Library
On-Chip Real-Time Single-Copy Polymerase Chain Reaction in Picoliter Droplets (open access)

On-Chip Real-Time Single-Copy Polymerase Chain Reaction in Picoliter Droplets

The first lab-on-chip system for picoliter droplet generation and PCR amplification with real-time fluorescence detection has performed PCR in isolated droplets at volumes 10{sup 6} smaller than commercial real-time PCR systems. The system utilized a shearing T-junction in a silicon device to generate a stream of monodisperse picoliter droplets that were isolated from the microfluidic channel walls and each other by the oil phase carrier. An off-chip valving system stopped the droplets on-chip, allowing them to be thermal cycled through the PCR protocol without droplet motion. With this system a 10-pL droplet, encapsulating less than one copy of viral genomic DNA through Poisson statistics, showed real-time PCR amplification curves with a cycle threshold of {approx}18, twenty cycles earlier than commercial instruments. This combination of the established real-time PCR assay with digital microfluidics is ideal for isolating single-copy nucleic acids in a complex environment.
Date: April 20, 2007
Creator: Beer, N. Reginald; Hindson, Benjamin J.; Wheeler, Elizabeth K.; Hall, Sara B.; Rose, Klint A.; Kennedy, Ian M. et al.
System: The UNT Digital Library