Consequences of the Large-Scale Subsidence Rate on the Stably Stratified Atmospheric Boundary Layer Over the Arctic Ocean, as seen in Large-Eddy Simulations (open access)

Consequences of the Large-Scale Subsidence Rate on the Stably Stratified Atmospheric Boundary Layer Over the Arctic Ocean, as seen in Large-Eddy Simulations

The analysis of surface heat fluxes and sounding profiles from SHEBA indicated possible significant effects of subsidence on the structure of stably-stratified ABLs (Mirocha et al. 2005). In this study the influence of the large-scale subsidence rate on the stably stratified atmospheric boundary layer (ABL) over the Arctic Ocean during clear sky, winter conditions is investigated using a large-eddy simulation model. Simulations are conducted while varying the subsidence rate between 0, 0.001 and 0.002 ms{sup -1}, and the resulting quasi-equilibrium ABL structure and evolution are examined. Simulations conducted without subsidence yield ABLs that are deeper, more strongly mixed, and cool much more rapidly than were observed. The addition of a small subsidence rate significantly improves agreement between the simulations and observations regarding the ABL height, potential temperature profiles and bulk heating rates. Subsidence likewise alters the shapes of the surface-layer flux, stress and shear profiles, resulting in increased vertical transport of heat while decreasing vertical momentum transport. A brief discussion of the relevance of these results to parameterization of the stable ABL under subsiding conditions in large-scale numerical weather and climate prediction models is presented.
Date: January 19, 2006
Creator: Mirocha, J D & Kosovic, B
System: The UNT Digital Library
ToF-SIMS study of polycrystalline uranium after exposure to deuterium (open access)

ToF-SIMS study of polycrystalline uranium after exposure to deuterium

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is employed to examine specific features observed on a polycrystalline depleted uranium sample after exposure to high purity D{sub 2} gas. The ToF-SIMS investigation, being the first of its kind on uranium, investigates a site where the deuterated form of uranium hydride (UD{sub 3}) is clearly observed to have broken through the thin, air-formed oxide. Density functional theory calculations have been performed, which confirm the stability of, and also assign structural geometries to, the various uranium containing fragments observed with SIMS. An inclusion site was also investigated using ToF-SIMS, and these data suggest that the edges of such inclusions exhibit increased D ion, and hence H ion, diffusion when compared to the surrounding surface oxide. These results offer support to the previously published hypotheses that inclusion sites on uranium surfaces exhibit an increased probability to form hydride sites under H{sub 2} exposure.
Date: January 19, 2006
Creator: Morrall, P; Price, D; Nelson, A; Siekhaus, W; Nelson, E; Wu, K J et al.
System: The UNT Digital Library
Quantum efficiency characterization of back-illuminated CCDs Part2: reflectivity measurements (open access)

Quantum efficiency characterization of back-illuminated CCDs Part2: reflectivity measurements

The usual quantum efficiency (QE) measurement heavily relies on a calibrated photodiode (PD) and the knowledge of the CCDs gain. Either can introduce significant systematic errors. But reflectivity can also be used to verify QE measurements. 1 - R > QE, where R is the reflectivity, and over a significant wavelength range, 1 - R = QE. An unconventional reflectometer has been developed to make this measurement. R is measured in two steps, using light from the lateral monochromator port via an optical fiber. The beam intensity is measured directly with aPD, then both the PD and CCD are moved so that the optical path length is unchanged and the light reflects once from the CCD; the PD current ratio gives R. Unlike traditional schemes this approach makes only one reflection from the CCD surface. Since the reflectivity of the LBNL CCDs might be as low as 2 percent this increases the signal to noise ratio dramatically. The goal is a 1 percent accuracy. We obtain good agreement between 1 - R and the direct QE results.
Date: January 19, 2006
Creator: Fabricius, Maximilian H.; Bebek, Chris J.; Groom, Donald E.; Karcher, Armin & Roe, Natalie A.
System: The UNT Digital Library
MANAGING THE RETRIEVAL RISK OF BURIED TRANSURANIC (TRU) WASTE WITH UNIQUE CHARACTERISTICS (open access)

MANAGING THE RETRIEVAL RISK OF BURIED TRANSURANIC (TRU) WASTE WITH UNIQUE CHARACTERISTICS

United States-Department of Energy (DOE) sites that store transuranic (TRU) waste are almost certain to encounter waste packages with characteristics that are so unique as to warrant special precautions for retrieval. At the Hanford Site, a subgroup of stored TRU waste (12 drums) had special considerations due to the radioactive source content of plutonium oxide (PuO{sub 2}), and the potential for high heat generation, pressurization, criticality, and high radiation. These characteristics bear on the approach to safely retrieve, overpack, vent, store, and transport the waste package. Because of the potential risk to personnel, contingency planning for unexpected conditions played an effective role in work planning and in preparing workers for the field inspection activity. As a result, the integrity inspections successfully confirmed waste package configuration and waste confinement without experiencing any perturbations due to unanticipated packaging conditions. This paper discusses the engineering and field approach to managing the risk of retrieving TRU waste with unique characteristics.
Date: January 19, 2006
Creator: WOJTASEK, R.D.; GADD, R.R. & GREENWELL, R.D.
System: The UNT Digital Library
Multi-watt 589nm fiber laser source (open access)

Multi-watt 589nm fiber laser source

We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichiometric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd{sup 3+} fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the competing 1088nm 4-level laser transition. At 15W, the 938nm laser has an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss …
Date: January 19, 2006
Creator: Dawson, Jay W.; Drobshoff, Alex D.; Beach, Raymond J.; Messerly, Michael J.; Payne, Stephen A.; Brown, Aaron et al.
System: The UNT Digital Library