Surface roughness effects on the solar reflectance of cool asphalt shingles (open access)

Surface roughness effects on the solar reflectance of cool asphalt shingles

We analyze the solar reflectance of asphalt roofing shingles that are covered with pigmented mineral roofing granules. The reflecting surface is rough, with a total area approximately twice the nominal area. We introduce a simple analytical model that relates the 'micro-reflectance' of a small surface region to the 'macro-reflectance' of the shingle. This model uses a mean field approximation to account for multiple scattering effects. The model is then used to compute the reflectance of shingles with a mixture of different colored granules, when the reflectances of the corresponding mono-color shingles are known. Simple linear averaging works well, with small corrections to linear averaging derived for highly reflective materials. Reflective base granules and reflective surface coatings aid achievement of high solar reflectance. Other factors that influence the solar reflectance are the size distribution of the granules, coverage of the asphalt substrate, and orientation of the granules as affected by rollers during fabrication.
Date: February 17, 2008
Creator: Akbari, Hashem; Berdahl, Paul; Akbari, Hashem; Jacobs, Jeffry & Klink, Frank
System: The UNT Digital Library
Longitudinal Density Modulation and Energy Conversion in Intense Beams (open access)

Longitudinal Density Modulation and Energy Conversion in Intense Beams

Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may under some circumstances be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams, and discusses three recent experiments related to the dynamics of density-modulated electron beams.
Date: February 17, 2006
Creator: Harris, J; Neumann, J; Tian, K & O'Shea, P
System: The UNT Digital Library
Shaping metal nanocrystals through epitaxial seeded growth (open access)

Shaping metal nanocrystals through epitaxial seeded growth

Morphological control of nanocrystals has becomeincreasingly important, as many of their physical and chemical propertiesare highly shape-dependent. Nanocrystal shape control for both single andmultiple material systems, however, remains fairly empirical andchallenging. New methods need to be explored for the rational syntheticdesign of heterostructures with controlled morphology. Overgrowth of adifferent material on well-faceted seeds, for example, allows for the useof the defined seed morphology to control nucleation and growth of thesecondary structure. Here, we have used highly faceted cubic Pt seeds todirect the epitaxial overgrowth of a secondary metal. We demonstrate thisconcept with lattice matched Pd to produce conformal shape-controlledcore-shell particles, and then extend it to lattice mismatched Au to giveanisotropic growth. Seeding with faceted nanocrystals may havesignificant potential towards the development of shape-controlledheterostructures with defined interfaces.
Date: February 17, 2008
Creator: Habas, Susan E.; Lee, Hyunjoo; Radmilovic, Velimir; Somorjai,Gabor A. & Yang, Peidong
System: The UNT Digital Library
Ultrafast Enhancement of Ferromagnetism via Photoexcited Holes inGaMnAs (open access)

Ultrafast Enhancement of Ferromagnetism via Photoexcited Holes inGaMnAs

We report on the observation of ultrafast photo-enhanced ferromagnetism in GaMnAs. It is manifested as a transient magnetization increase on a 100-ps time scale, after an initial sub-ps demagnetization. The dynamic magnetization enhancement exhibits a maximum below the Curie temperature {Tc} and dominates the demagnetization component when approaching {Tc}. We attribute the observed ultrafast collective ordering to the p-d exchange interaction between photoexcited holes and Mn spins, leading to a correlation-induced peak around 20K and a transient increase in {Tc}.
Date: February 17, 2007
Creator: Wang, J.; Cotoros, I.; Dani, K.M.; Liu, X.; Furdyna, J.K. & Chemla, D.S.
System: The UNT Digital Library
INSIGHTS INTO THE DYNAMIC RESPONSE OF TUNNELS IN JOINTED ROCKS (open access)

INSIGHTS INTO THE DYNAMIC RESPONSE OF TUNNELS IN JOINTED ROCKS

Tunnels in jointed rocks can be subjected to severe dynamic loads because of rock bursts, coal bumps, and large earthquakes. A series of 3-dimensional simulations was performed, based on discrete element analysis to gain insights into the parameters that influence the response of such tunnels. The simulations looked at the effect of joint set orientation, the effect of joint spacing, the effect of peak displacement for a given peak velocity, the effect of pulse peak velocity for a given displacement, the influence of using rigid versus deformable blocks in the analyses, and the effect of repeated loading. The results of this modeling were also compared to field evidence of dynamic tunnel failures. This comparison reinforced the notion that 3-dimensional discrete element analysis can capture very well the kinematics of structures in jointed rocks under dynamic loading. The paper concludes with a glimpse into the future. Results are shown for a 3-dimensional discrete element massively parallel simulation with 100 million contact elements, performed with the LLNL LDEC code.
Date: February 17, 2005
Creator: Heuze, F E & Morris, J P
System: The UNT Digital Library
Dystroglycan loss disrupts polarity and beta-casein induction inmammary epithelial cells by perturbing laminin anchoring (open access)

Dystroglycan loss disrupts polarity and beta-casein induction inmammary epithelial cells by perturbing laminin anchoring

Precise contact between epithelial cells and their underlying basement membrane is critical to the maintenance of tissue architecture and function. To understand the role that the laminin receptor dystroglycan (DG) plays in these processes, we assayed cell responses to laminin-111 following conditional ablation of DG expression in cultured mammary epithelial cells (MECs). Strikingly, DG loss disrupted laminin-111-induced polarity and {beta}-casein production, and abolished laminin assembly at the step of laminin binding to the cell surface. DG re-expression restored these deficiencies. Investigations of mechanism revealed that DG cytoplasmic sequences were not necessary for laminin assembly and signaling, and only when the entire mucin domain of extracellular DG was deleted did laminin assembly not occur. These results demonstrate that DG is essential as a laminin-111 co-receptor in MECs that functions by mediating laminin anchoring to the cell surface, a process that allows laminin polymerization, tissue polarity, and {beta}-casein induction. The observed loss of laminin-111 assembly and signaling in DG-/-MECs provides insights into the signaling changes occurring in breast carcinomas and other cancers, where DG's laminin-binding function is frequently defective.
Date: February 17, 2006
Creator: Weir, M. Lynn; Oppizzi, Maria Luisa; Henry, Michael D.; Onishi,Akiko; Campbell, Kevin P.; Bissell, Mina J. et al.
System: The UNT Digital Library
Beam Matching to a Plasma Wakefield Accelerator Using a Ramped Density Profile at the Plasma Boundary (open access)

Beam Matching to a Plasma Wakefield Accelerator Using a Ramped Density Profile at the Plasma Boundary

An important aspect of plasma wake field accelerators (PWFA) is stable propagation of the drive beam. In the under dense plasma regime, the drive beam creates an ion channel which acts on the beam as a strong thick focusing lens. The ion channel causes the beam to undergo multiple betatron oscillations along the length of the plasma. There are several advantages if the beam size can be matched to a constant radius. First, simulations have shown that instabilities such as hosing are reduced when the beam is matched [1]. Second, synchrotron radiation losses are minimized when the beam is matched. Third, an initially matched beam will propagate with no significant change in beam size in spite of large energy loss or gain. Coupling to the plasma with a matched radius can be difficult in some cases. This paper shows how an appropriate density ramp at the plasma entrance can be useful for achieving a matched beam. Additionally, the density ramp is helpful in bringing a misaligned trailing beam onto the drive beam axis. A plasma source with boundary profiles useful for matching has been created for the E-164X PWFA experiments at SLAC.
Date: February 17, 2006
Creator: Marsh, K. A.; Clayton, C. E.; Huang, C.; Johnson, D. K.; Joshi, C.; Lu, W. et al.
System: The UNT Digital Library
Depth Dependence of the Mechanical Properties of Human Enamel by Nanoindentation (open access)

Depth Dependence of the Mechanical Properties of Human Enamel by Nanoindentation

Nanoindentation has recently emerged to be the primary method to study the mechanical behavior and reliability of human enamel. Its hardness and elastic modulus were generally reported as average values with standard deviations that were calculated from the results of multiple nanoindentation tests. In such an approach, it is assumed that the mechanical properties of human enamel are constant, independent of testing parameters, like indent depth and loading rate. However, little is known if they affect the measurements. In this study, we investigated the dependence of the hardness and elastic modulus of human enamel on the indent depth. We found that in a depth range from 100 nm to 2000 nm the elastic moduli continuously decreased from {approx} 104 GPa to {approx} 70 GPa, and the hardnesses decreased from {approx} 5.7 GPa to {approx} 3.6 GPa. We then considered human enamel as a fiber-reinforced composite, and used the celebrated rule of mixture theory to quantify the upper and lower bounds of the elastic moduli, which were shown to cover the values measured in the current study and previous studies. Accordingly, we attributed the depth dependence of the hardness and modulus to the continuous microstructure evolution induced by nanoindenter.
Date: February 17, 2006
Creator: Zhou, J & Hsiung, L L
System: The UNT Digital Library
AMG by element agglomeration and constrained energy minimization interpolation (open access)

AMG by element agglomeration and constrained energy minimization interpolation

This paper studies AMG (algebraic multigrid) methods that utilize energy minimization construction of the interpolation matrices locally, in the setting of element agglomeration AMG. The coarsening in element agglomeration AMG is done by agglomerating fine-grid elements, with coarse element matrices defined by a local Galerkin procedure applied to the matrix assembled from the individual fine-grid element matrices. This local Galerkin procedure involves only the coarse basis restricted to the agglomerated element. To construct the coarse basis, one exploits previously proposed constraint energy minimization procedures now applied to the local matrix. The constraints are that a given set of vectors should be interpolated exactly, not only globally, but also locally on every agglomerated element. The paper provides algorithmic details, as well as a convergence result based on a ''local-to-global'' energy bound of the resulting multiple-vector fitting AMG interpolation mappings. A particular implementation of the method is illustrated with a set of numerical experiments.
Date: February 17, 2006
Creator: Kolev, T V & Vassilevski, P S
System: The UNT Digital Library
Living with genome instability: the adaptation of phytoplasmas todiverse environments of their insect and plant hosts (open access)

Living with genome instability: the adaptation of phytoplasmas todiverse environments of their insect and plant hosts

Phytoplasmas (Candidatus Phytoplasma, Class Mollicutes) cause disease in hundreds of economically important plants, and are obligately transmitted by sap-feeding insects of the order Hemiptera, mainly leafhoppers and psyllids. The 706,569-bp chromosome and four plasmids of aster yellows phytoplasma strain witches broom (AY-WB) were sequenced and compared to the onion yellows phytoplasma strain M (OY-M) genome. The phytoplasmas have small repeat-rich genomes. The repeated DNAs are organized into large clusters, potential mobile units (PMUs), which contain tra5 insertion sequences (ISs), and specialized sigma factors and membrane proteins. So far, PMUs are unique to phytoplasmas. Compared to mycoplasmas, phytoplasmas lack several recombination and DNA modification functions, and therefore phytoplasmas probably use different mechanisms of recombination, likely involving PMUs, for the creation of variability, allowing phytoplasmas to adjust to the diverse environments of plants and insects. The irregular GC skews and presence of ISs and large repeated sequences in the AY-WB and OY-M genomes are indicative of high genomic plasticity. Nevertheless, segments of {approx}250 kb, located between genes lplA and glnQ are syntenic between the two phytoplasmas, contain the majority of the metabolic genes and no ISs. AY-WB is further along in the reductive evolution process than OY-M. The AY-WB genome is {approx}154 …
Date: February 17, 2006
Creator: Bai, Xiaodong; Zhang, Jianhua; Ewing, Adam; Miller, Sally A.; Radek, Agnes; Shevchenko, Dimitriy et al.
System: The UNT Digital Library
Automatic segmentation of histological structures in mammary gland tissue sections (open access)

Automatic segmentation of histological structures in mammary gland tissue sections

Real-time three-dimensional (3D) reconstruction of epithelial structures in human mammary gland tissue blocks mapped with selected markers would be an extremely helpful tool for breast cancer diagnosis and treatment planning. Besides its clear clinical application, this tool could also shed a great deal of light on the molecular basis of breast cancer initiation and progression. In this paper we present a framework for real-time segmentation of epithelial structures in two-dimensional (2D) images of sections of normal and neoplastic mammary gland tissue blocks. Complete 3D rendering of the tissue can then be done by surface rendering of the structures detected in consecutive sections of the blocks. Paraffin embedded or frozen tissue blocks are first sliced, and sections are stained with Hematoxylin and Eosin. The sections are then imaged using conventional bright field microscopy and their background is corrected using a phantom image. We then use the Fast-Marching algorithm to roughly extract the contours of the different morphological structures in the images. The result is then refined with the Level-Set method which converges to an accurate (sub-pixel) solution for the segmentation problem. Finally, our system stacks together the 2D results obtained in order to reconstruct a 3D representation of the entire tissue …
Date: February 17, 2004
Creator: Fernandez-Gonzalez, Rodrigo; Deschamps, Thomas; Idica, Adam K.; Malladi, Ravikanth & Ortiz de Solorzano, Carlos
System: The UNT Digital Library
Nonlinear diffusion and image contour enhancement (open access)

Nonlinear diffusion and image contour enhancement

None
Date: February 17, 2003
Creator: Barenblatt, G.I. & Vazquez, J.L.
System: The UNT Digital Library
Microbial Forensics: A Scientific Assessment (open access)

Microbial Forensics: A Scientific Assessment

Microorganisms have been used as weapons in criminal acts, most recently highlighted by the terrorist attack using anthrax in the fall of 2001. Although such ''biocrimes'' are few compared with other crimes, these acts raise questions about the ability to provide forensic evidence for criminal prosecution that can be used to identify the source of the microorganisms used as a weapon and, more importantly, the perpetrator of the crime. Microbiologists traditionally investigate the sources of microorganisms in epidemiological investigations, but rarely have been asked to assist in criminal investigations. A colloquium was convened by the American Academy of Microbiology in Burlington, Vermont, on June 7-9, 2002, in which 25 interdisciplinary, expert scientists representing evolutionary microbiology, ecology, genomics, genetics, bioinformatics, forensics, chemistry, and clinical microbiology, deliberated on issues in microbial forensics. The colloquium's purpose was to consider issues relating to microbial forensics, which included a detailed identification of a microorganism used in a bioattack and analysis of such a microorganism and related materials to identify its forensically meaningful source--the perpetrators of the bioattack. The colloquium examined the application of microbial forensics to assist in resolving biocrimes with a focus on what research and education are needed to facilitate the use of …
Date: February 17, 2003
Creator: Keim, Paul
System: The UNT Digital Library
HRTEM at half-Angstrom resolution: From OAM to TEAM (open access)

HRTEM at half-Angstrom resolution: From OAM to TEAM

Transmission electron microscopy (TEM) at sub-Angstrom resolution is important for nanotechnology. Identifying atom positions requires appropriate resolution, the ability to separate distinct objects in images. With Cs corrected, the information limit of the TEM controls resolution. The OAM has demonstrated that a resolution of 0.78A is possible. The TEAM (transmission electron achromatic microscope) will be a TEM using hardware correction of Cs with a monochromator to improve its information limit beyond that of the OAM by improvement of the electron-beam energy spread. It is shown that A 300keV HRTEM TEAM does not require a Cc corrector to reach 0.5A as long as beam energy spread and objective-lens current ripple are lowered sufficiently. A lower-voltage TEAM will require stricter limits on objective-lens current ripple to reach the targeted 0.5A resolution. No improvement in HT ripple or noise is required to improve the information limit per se since the monochromator determines the energy spread in the beam. However, improved HT ripple and noise will improve the beam current statistics (number of electrons passing through the monochromator) by placing more of the electrons closer to the center of the energy-spread distribution
Date: February 17, 2003
Creator: O'Keefe, Michael A.
System: The UNT Digital Library
Resurrection of beam conditioning for free electron lasers (open access)

Resurrection of beam conditioning for free electron lasers

Recently Emma and Stupakov identified a fatal flaw in a Free Electron Laser (FEL) beam conditioning scheme. They showed that the conditioning is always accompanied by a projected transverse emittance growth that is so large as to make the beam conditioning completely impractical for short wavelength FELs. Furthermore, they provided a general proof along with evidence of computer simulation and reached a conclusion that any beam conditioner, regardless of the method, would suffer from the same constraints and limitations. In this paper, the author proposes an easy surgical removal of the fatal flaw by making a critical yet simple modification to the very scheme analyzed, thus resurrect the beam conditioning for short wavelength FELs. More generally, the also explain why a general search for removing have failed, why the concept and definition of beam conditioning.
Date: February 17, 2003
Creator: Xie, Ming
System: The UNT Digital Library
3-D Numerical Modeling of a Complex Salt Structure (open access)

3-D Numerical Modeling of a Complex Salt Structure

Reliably processing, imaging, and interpreting seismic data from areas with complicated structures, such as sub-salt, requires a thorough understanding of elastic as well as acoustic wave propagation. Elastic numerical modeling is an essential tool to develop that understanding. While 2-D elastic modeling is in common use, 3-D elastic modeling has been too computationally intensive to be used routinely. Recent advances in computing hardware, including commodity-based hardware, have substantially reduced computing costs. These advances are making 3-D elastic numerical modeling more feasible. A series of example 3-D elastic calculations were performed using a complicated structure, the SEG/EAGE salt structure. The synthetic traces show that the effects of shear wave propagation can be important for imaging and interpretation of images, and also for AVO and other applications that rely on trace amplitudes. Additional calculations are needed to better identify and understand the complex wave propagation effects produced in complicated structures, such as the SEG/EAGE salt structure.
Date: February 17, 2000
Creator: House, L.; Larsen, S. & Bednar, J. B.
System: The UNT Digital Library
Determination of unsaturated flow paths in a randomly distributed fracture network (open access)

Determination of unsaturated flow paths in a randomly distributed fracture network

We present a numerical investigation of steady flow paths in a two-dimensional, unsaturated discrete-fracture network. The fracture network is constructed using field measurement data including fracture density, trace lengths, and orientations from a particular site. The fracture network with a size of 100m x 150m contains more than 20,000 fractures. The steady state unsaturated flow in the fracture network is investigated for different boundary conditions. Simulation results indicate that the flow paths are generally vertical, and horizontal fractures mainly provide pathways between neighboring vertical paths. The simulation results support that the average spacing between flow paths in a layered system tends to increase or flow becomes more focused with depth as long as flow is gravity driven (Liu et al. 2002).
Date: February 17, 2003
Creator: Zhang, Keni; Wu, Yu-Shu; Bodvarsson, G.S. & Liu, Hui-Hai
System: The UNT Digital Library
Direct Numerical Simulation of Disperse Multiphase High-Speed Flows (open access)

Direct Numerical Simulation of Disperse Multiphase High-Speed Flows

A recently introduced Level-Set-based Cartesian Grid (LSCG) Characteristics-Based Matching (CBM) method is applied for direct numerical simulation of shock-induced dispersal of solid material. The method incorporates the latest advancements in the level set technology and characteristics-based numerical methods for solution of hyperbolic conservation laws and boundary treatment. The LSCG/CBM provides unique capabilities to simulate complex fluid-solid (particulate) multiphase flows under high-speed flow conditions and taking into account particle-particle elastic and viscoelastic collisions. The particular emphasis of the present study is placed on importance of appropriate modeling of particle-particle collisions, which are demonstrated to crucially influence the global behavior of high-speed multiphase particulate flows. The results of computations reveal the richness and complexity of flow structures in compressible disperse systems, due to dynamic formation of shocks and contact discontinuities, which provide an additional long-range interaction mechanism in dispersed high-speed multiphase flows.
Date: February 17, 2004
Creator: Nourgaliev, R. R.; Dinh, T. N.; Theofanous, T. G.; Koning, J. M.; Greenman, R. M. & Nakafuji, G. T.
System: The UNT Digital Library
Direct Observations of Austenite, Bainite and Martensite Formation During Arc Welding of 1045 Steel using Time Resolved X-Ray Diffraction (open access)

Direct Observations of Austenite, Bainite and Martensite Formation During Arc Welding of 1045 Steel using Time Resolved X-Ray Diffraction

In-situ Time Resolved X-Ray Diffraction (TRXRD) experiments were performed during stationary gas tungsten arc (GTA) welding of AISI 1045 C-Mn steel. These synchrotron-based experiments tracked, in real time, phase transformations in the heat-affected zone of the weld under rapid heating and cooling conditions. The diffraction patterns were recorded at 100 ms intervals, and were later analyzed using diffraction peak profile analysis to determine the relative fraction of ferrite ({alpha}) and austenite ({gamma}) phases in each diffraction pattern. Lattice parameters and diffraction peak widths were also measured throughout the heating and cooling cycle of the weld, providing additional information about the phases that were formed. The experimental results were coupled with a thermofluid weld model to calculate the weld temperatures, allowing time-temperature transformation kinetics of the {alpha} {yields} {gamma} phase transformation to be evaluated. During heating, complete austenitization was observed in the heat affected zone of the weld and the kinetics of the {alpha} {yields} {gamma} phase transformation were modeled using a Johnson-Mehl-Avrami (JMA) approach. The results from the 1045 steel weld were compared to those of a 1005 low carbon steel from a previous study. Differences in austenitization rates of the two steels were attributed to differences in the base …
Date: February 17, 2004
Creator: Elmer, J.; Palmer, T.; Babu, S.; Zhang, W. & DebRoy, T.
System: The UNT Digital Library
Improvement in Plasma Performance with Lithium Coatings in NSTX (open access)

Improvement in Plasma Performance with Lithium Coatings in NSTX

Lithium as a plasma-facing material has attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Dramatic effects on plasma performance with lithium-coated plasma-facing components (PFC's) have been demonstrated on many fusion devices, including TFTR, T-11M, and FT-U. Using a liquid-lithium-filled tray as a limiter, the CDX-U device achieved very significant enhancement in the confinement time of ohmically heated plasmas. The recent NSTX experiments reported here have demonstrated, for the first time, significant and recurring benefits of lithium PFC coatings on divertor plasma performance in both L- and H- mode regimes heated by neutral beams.
Date: February 17, 2009
Creator: Kaita, R
System: The UNT Digital Library
Development of a portal to Texas history (open access)

Development of a portal to Texas history

Article discussing the development of the University of North Texas (UNT) Libraries' Portal to Texas History.
Date: February 17, 2005
Creator: Hartman, Cathy Nelson; Belden, Dreanna; Reis, Nancy; Alemneh, Daniel Gelaw; Phillips, Mark Edward & Dunlop, Doug
System: The UNT Digital Library
Comments on "Solubility of Ethyl Maltol in Aqueous Ethanol Mixtures" (Liu, B.-S.; Liu, R.-J.; Hu, Y.-Q.; Hu, Q.-F. J. Chem. Eng. Data 2008, 53, 2712-2714) (open access)

Comments on "Solubility of Ethyl Maltol in Aqueous Ethanol Mixtures" (Liu, B.-S.; Liu, R.-J.; Hu, Y.-Q.; Hu, Q.-F. J. Chem. Eng. Data 2008, 53, 2712-2714)

This article provides comments on "Solubility of Ethyl Maltol in Aqueous Ethanol Mixtures," published in 2008 in the 'Journal of Chemical and Engineering Data.'
Date: February 17, 2009
Creator: Jouyban, Abolghasem & Acree, William E. (William Eugene)
System: The UNT Digital Library
Ultra-Fast Pump-Probe Detection Using Plasmas (open access)

Ultra-Fast Pump-Probe Detection Using Plasmas

The temporal resolution of pump-flash interactions in the femtosecond-attosecond (fs-as) regime is limited by the characteristic time constants of the excited states in the detector material. If the relaxation time constant is appreciably longer that the time interval between the pump and probe signals the response of the detector material to the probe represents a temporal convolution with the pump and probe responses, setting a lower limit on the resolution to which the interval between the two pulses can be measured. In most of the solid state ultrafast detection schemes that are being considered for the ultrashort pulse x-ray sources under current development at SLAC and elsewhere the characteristic time constants are related to the bound states of the atoms comprising the material or to the relaxation times of phase transitions or charge carrier populations of the lattice, setting a probable lower limit on the attainable resolution on the order of {approx}0.1 ps. In this paper we consider a novel detection principle based on the excitation of specially prepared unbound states in an ionized plasma with high pump and probe fields, and estimate its potential for extending the lower limit of resolution into the attosecond (as) regime.
Date: February 17, 2006
Creator: Tatchyn, R.
System: The UNT Digital Library
First Observations of Laser-Driven Acceleration of Relativistic Electrons in a Semi-Infinite Vacuum Space (open access)

First Observations of Laser-Driven Acceleration of Relativistic Electrons in a Semi-Infinite Vacuum Space

We have observed acceleration of relativistic electrons in vacuum driven by a linearly polarized visible laser beam incident on a thin gold-coated reflective boundary. The observed energy modulation effect follows all the characteristics expected for linear acceleration caused by a longitudinal electric field. As predicted by the Lawson-Woodward theorem the laser driven modulation only appears in the presence of the boundary. It shows a linear dependence with the strength of the electric field of the laser beam and also it is critically dependent on the laser polarization. Finally, it appears to follow the expected angular dependence of the inverse transition radiation process. experiment as the Laser Electron Accelerator Project (LEAP).
Date: February 17, 2006
Creator: Plettner, T.; Byer, R. L.; Smith, T. I.; Colby, E.; Cowan, B.; Sears, C. M. S. et al.
System: The UNT Digital Library