Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals (open access)

Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals

Thermite mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantages of these systems typically include high energy density, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability and possess insensitive ignition properties. For the specific applications of humanitarian demining and disposal of unexploded ordnance, these pyrotechnic formulations offer additional benefits. The combination of high thermal input with low brisance can be used to neutralize the energetic materials in mines and other ordnance without the "explosive" high-blast-pressure events that can cause extensive collateral damage to personnel, facilities, and the environment. In this paper, we review the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. Calculated values for reactant density, heat of reaction (per unit mass and per unit volume), and reaction temperature (without and with consideration of phase changes and the variation of specific heat values) are tabulated. These data are ranked in several ways, according to density, heat of reaction, reaction temperature, and gas production.
Date: May 14, 1999
Creator: Fischer, S.H. & Grubelich, M.C.
System: The UNT Digital Library
Prediction of Tungsten CMP Pad Life Using Blanket Removal Rate Data and Endpoint Data Obtained from Process Temperature and Carrier Motor Current Measurments (open access)

Prediction of Tungsten CMP Pad Life Using Blanket Removal Rate Data and Endpoint Data Obtained from Process Temperature and Carrier Motor Current Measurments

Several techniques to predict pad failure during tungsten CMP were investigated for a specific consumable set. These techniques include blanket polish rate measurements and metrics derived from two endpoint detection schemes. Blanket polish rate decreased significantly near pad failure. Metrics from the thermal endpoint technique included change in peak temperature, change in the time to reach peak temperature, and the change in the slope of the temperature trace just prior to peak temperature all as a function of pad life. Average carrier motor current before endpoint was also investigated. Changes in these metrics were observed however these changes, excluding time to peak process temperature, were either not consistent between pads or too noisy to be reliable predictors of pad failure.
Date: May 14, 1999
Creator: Hetherington, Dale L. & Stein, David J.
System: The UNT Digital Library
The DOE/NREL Environmental Science Program (open access)

The DOE/NREL Environmental Science Program

This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.
Date: May 14, 2001
Creator: Lawson, Douglas R. & Gurevich, Michael
System: The UNT Digital Library
A Preliminary Study of Energy Recovery in Vehicles by Using Regenerative Magnetic Shock Absorbers (open access)

A Preliminary Study of Energy Recovery in Vehicles by Using Regenerative Magnetic Shock Absorbers

Road vehicles can expend a significant amount of energy in undesirable vertical motions that are induced by road bumps, and much of that is dissipated in conventional shock absorbers as they dampen the vertical motions. Presented in this paper are some of the results of a study aimed at determining the effectiveness of efficiently transforming that energy into electrical power by using optimally designed regenerative electromagnetic shock absorbers. In turn, the electrical power can be used to recharge batteries or other efficient energy storage devices (e.g., flywheels) rather than be dissipated. The results of the study are encouraging - they suggest that a significant amount of the vertical motion energy can be recovered and stored.
Date: May 14, 2001
Creator: Goldner, R. B.; Zerigian, P. & Hull, J. R.
System: The UNT Digital Library
Heavy Vehicle Propulsion Materials: Recent Progress and Future Plans (open access)

Heavy Vehicle Propulsion Materials: Recent Progress and Future Plans

The Heavy Vehicle Propulsion Materials Program provides enabling materials technology for the U.S. DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program is based on an industry assessment and the technology roadmap for the OHVT. A five-year program plan was published in 2000. Major efforts in the program are materials for diesel engine fuel systems, exhaust aftertreatment, and air handling. Additional efforts include diesel engine valve-train materials, structural components, and thermal management. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications. Selected technical issues and planned and ongoing projects as well as brief summaries of several technical highlights are given.
Date: May 14, 2001
Creator: Johnson, D. Ray & Diamond, Sidney
System: The UNT Digital Library
Update on Engine Combustion Research at Sandia National Laboratories (open access)

Update on Engine Combustion Research at Sandia National Laboratories

The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work.
Date: May 14, 2001
Creator: Keller, Jay & Singh, Gurpreet
System: The UNT Digital Library
Measurement of emission diameter as a function of time on foam z- pinch plasmas (open access)

Measurement of emission diameter as a function of time on foam z- pinch plasmas

We have developed a streaked imaging capability to make time-resolved measurements of the emission size for low density foam z-pinches. By lens coupling visible emission from the z-pinch target to an array of fiber optics we obtained the emission profile in the visible as a function of time with radial resolution of 300 {mu}m. To measure the emission at temperatures greater than {approx}40 eV the source was slit-imaged or pin-hole imaged onto an x-ray filtered scintillator. Non-uniformities in both visible and x-ray emission were observed. We describe the diagnostics, the image unfold process, and results from the instrument for both visible and x-ray measurements.
Date: May 14, 1996
Creator: Lazier, S. E.; Barber, T. L.; Derzon, M. S. & Kellogg, J. W.
System: The UNT Digital Library
Impurity effects on bonding charge in Ni{sub 3}Al (open access)

Impurity effects on bonding charge in Ni{sub 3}Al

We have studied the effect of B and H on the charge density in Ni{sub 3}Al employing first-principles electronic structure calculations based on the FLMTO method. The changes in the electronic structure induced by B result from hybridization of d states of the nearest neighbor Ni atoms with adjacent B-{ital PP} states. Thus, boron prefers to occupy Ni-rich octahedral interstices [X(7)]. Boron greatly enhances the intraplanar metallic bonding between the Ni atoms, enhances the interplanar bonding between the NiAl layers in [001] direction, and reduces the bonding-charge directionality near the Ni(3) atoms. It is concluded that B acts to increase crystal cohesion. Hydrogen enhances the bonding-charge directionality near Ni(3) atoms and has virtually no interstitial charge enhancement, suggesting that H does not promote local cohesion. When both B and H are present, the dominant changes in the electronic structure induced by B and H seems to have little effect.
Date: May 14, 1996
Creator: Sun, Sheng N.; Kioussis, N.; Lim, Say-Peng; Gonis, A. & Gourdin, W.
System: The UNT Digital Library
On the use of diffusion synthetic acceleration in parallel 3D neutral particle transport calculations (open access)

On the use of diffusion synthetic acceleration in parallel 3D neutral particle transport calculations

The linear Boltzmann transport equation (BTE) is an integro-differential equation arising in deterministic models of neutral and charged particle transport. In slab (one-dimensional Cartesian) geometry and certain higher-dimensional cases, Diffusion Synthetic Acceleration (DSA) is known to be an effective algorithm for the iterative solution of the discretized BTE. Fourier and asymptotic analyses have been applied to various idealizations (e.g., problems on infinite domains with constant coefficients) to obtain sharp bounds on the convergence rate of DSA in such cases. While DSA has been shown to be a highly effective acceleration (or preconditioning) technique in one-dimensional problems, it has been observed to be less effective in higher dimensions. This is due in part to the expense of solving the related diffusion linear system. We investigate here the effectiveness of a parallel semicoarsening multigrid (SMG) solution approach to DSA preconditioning in several three dimensional problems. In particular, we consider the algorithmic and implementation scalability of a parallel SMG-DSA preconditioner on several types of test problems.
Date: May 14, 1998
Creator: Brown, P. & Chang, B.
System: The UNT Digital Library
HCCI Combustion: Analysis and Experiments (open access)

HCCI Combustion: Analysis and Experiments

Homogeneous charge compression ignition (HCCI) is a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low NOx and particulate matter emissions. This paper describes the HCCI research activities being currently pursued at Lawrence Livermore National Laboratory and at the University of California Berkeley. Current activities include analysis as well as experimental work. On analysis, we have developed two powerful tools: a single zone model and a multi-zone model. The single zone model has proven very successful in predicting start of combustion and providing reasonable estimates for peak cylinder pressure, indicated efficiency and NOX emissions. This model is being applied to develop detailed engine performance maps and control strategies, and to analyze the problem of engine startability. The multi-zone model is capable of very accurate predictions of the combustion process, including HC and CO emissions. The multi-zone model h as applicability to the optimization of combustion chamber geometry and operating conditions to achieve controlled combustion at high efficiency and low emissions. On experimental work, we have done a thorough evaluation of operating conditions in a 4-cylinder Volkswagen TDI engine. The engine has been operated over a wide range of conditions by adjusting the …
Date: May 14, 2001
Creator: Aceves, Salvador M.; Flowers, Daniel L.; Martinez-Frias, Joel; Smith, J. Ray; Dibble, Robert; Au, Michael et al.
System: The UNT Digital Library
Ultralight Stainless Steel Urban Bus Concept (open access)

Ultralight Stainless Steel Urban Bus Concept

While stainless steel buses are certainly not new, this study reveals opportunities for substantial improvements in structural performance.The objective of this project was to investigate the mass saving potential of ultra-high strength stainless steel as applied to the structure of a full size urban transit bus.The resulting design for a low floor,hybrid bus has an empty weight less than half that of a conventional transit bus.The reduced curb weight allows for a greater payload,without exceeding legal axle limits. A combination of finite element modeling and dynamic testing of scale models was used to predict structural performance.
Date: May 14, 2001
Creator: Emmons, J. Bruce & Blessing, Leonard J.
System: The UNT Digital Library
Overview of Cooperative Monitoring Concepts and the CMC (open access)

Overview of Cooperative Monitoring Concepts and the CMC

Cooperative monitoring holds the promise of utilizing many technologies from conflicts of the past to implement agreements of peace in the future. Important approaches to accomplish this are to develop the framework for assessing monitoring opportunities and to provide education and training on the technologies and experience available for sharing with others. The Cooperative Monitoring Center (CMC) at Sandia National Laboratories is working closely with agencies throughout the federal government, academics at home and abroad, and regional organizations to provide the technical tools needed to assess, design, analyze, and implement these cooperative agreements. In doing so, the goals of building regional confidence and increasing trust and communication can be furthered.
Date: May 14, 1999
Creator: Biringer, Kent L.
System: The UNT Digital Library
Metallization of Fluid Hydrogen (open access)

Metallization of Fluid Hydrogen

The electrical activity of liquid hydrogen has been measured at the high dynamic pressures, and temperatures that can be achieved with a reverberating shock wave. The resulting data are most naturally interpreted in terms of a continuous transition from a semiconducting to a metallic, largely diatomic fluid, the latter at 140 CPa, (ninefold compression) and 3000 K. While the fluid at these conditions resembles common liquid metals by the scale of its resistivity of 500 micro-ohm-cm, it differs by retaining a strong pairing character, and the precise mechanism by which a metallic state might be attained is still a matter of debate. Some evident possibilities include (i) physics of a largely one-body character, such as a band-overlap transition, (ii) physics of a strong-coupling or many-body character,such as a Mott-Hubbard transition, and (iii) process in which structural changes are paramount.
Date: May 14, 1997
Creator: Nellis, W. J.; Louis, A. A. & Ashcroft, N. W.
System: The UNT Digital Library
Analysis of In-Situ Vibration Monitoring for End-Point Detection of CMP Planarization Processes (open access)

Analysis of In-Situ Vibration Monitoring for End-Point Detection of CMP Planarization Processes

This paper details the analysis of vibration monitoring for end-point control in oxide CMP processes. Two piezoelectric accelerometers were integrated onto the backside of a stainless steel polishing head of an IPEC 472 polisher. One sensor was placed perpendicular to the carrier plate (vertical) and the other parallel to the plate (horizontal). Wafers patterned with metal and coated with oxide material were polished at different speeds and pressures. Our results show that it is possible to sense a change in the vibration signal over time during planarization of oxide material on patterned wafers. The horizontal accelerometer showed more sensitivity to change in vibration amplitude compared to the vertical accelerometer for a given polish condition. At low carrier and platen rotation rates, the change in vibration signal over time at fixed frequencies decreased approximately ½ - 1 order of magnitude (over the 2 to 10 psi polish pressure ranges). At high rotation speeds, the vibration signal remained essentially constant indicating that other factors dominated the vibration signaL These results show that while it is possible to sense changes in acceleration during polishing, more robust hardware and signal processing algorithms are required to ensure its use over a wide range of process …
Date: May 14, 1999
Creator: Hetherington, Dale L.; Lauffer, James P.; Shingledecker, David M.; Stein, David J. & Wyckoff, Edward E.
System: The UNT Digital Library
Reactive carbon from life support wastes for incinerator flue gas cleanup-System Testing (open access)

Reactive carbon from life support wastes for incinerator flue gas cleanup-System Testing

This paper presents the results from a joint research initiative between NASA Ames Research Center and Lawrence Berkeley National lab. The objective of the research is to produce activated carbon from life support wastes and to use the activated carbon to adsorb and chemically reduce the NO{sub x} and SO{sub 2} contained in incinerator flue gas. Inedible biomass waste from food production is the primary waste considered for conversion to activated carbon. Results to date show adsorption of both NO{sub x} and SO{sub 2} in activated carbon made from biomass. Conversion of adsorbed NO{sub x} to nitrogen has also been observed.
Date: May 14, 2002
Creator: Fisher, John W.; Pisharody, Suresh; Moran, Mark J.; Wignarajah, Kanapathipillai; Xu, X.H.; Shi, Yao et al.
System: The UNT Digital Library
Quantitative Analysis of Clustered DNA Damages Induced by Silicon Beams of Different Kinetic Energy (open access)

Quantitative Analysis of Clustered DNA Damages Induced by Silicon Beams of Different Kinetic Energy

Humans may b exposed to highly energetic charged particle radiation as a result of medical treatments, occupational activitie or accidental events. In recent years, our increasing presence and burgeoning interest in space exploration beyond low Earth orbit has led to a large increase in the research of the biological effects ofcharged particle radiation typical of that encountered in the space radiation environment. The study of the effects of these types of radiation qualities in terms ofDNA damage induction and repair is fundamental to understand mechanisms both underlying their greater biological effectiveness as we)) as the short and long term risks of health effects such as carcinogenesis, degen rative diseases and premature aging. Charged particle radiation induces a variety of DNA alterations, notably bistranded clustered damages, defined as two or more closely-opposed strand break , oxidized bases or abasic sites within a few helical turns. The induction of such highly complex DNA damage enhances the probability of incorrect or incomplete repair and thus constitutes greater potential for genomic instability, cell death and transformation.
Date: May 14, 2013
Creator: Keszenman, D. J.; Bennett, P. V.; Sutherland, B. M. & Wilson, P. F.
System: The UNT Digital Library
Mercury-Free Dissolution of Aluminum-Based Nuclear Material: From Basic Science to the Plant (open access)

Mercury-Free Dissolution of Aluminum-Based Nuclear Material: From Basic Science to the Plant

Conditions were optimized for the first plant-scale dissolution of an aluminum-containing nuclear material without using mercury as a catalyst. This nuclear material was a homogeneous mixture of plutonium oxide and aluminum metal that had been compounded for use as the core matrix in Mark 42 nuclear fuel. Because this material had later failed plutonium distribution specifications, it was rejected for use in the fabrication of Mark 42 fuel tubes, and was stored at the Savannah River Site (SRS) awaiting disposition. This powder-like material was composed of a mixture of approximately 80 percent aluminum and 11 percent plutonium. Historically, aluminum-clad spent nuclear fuels [13] have been dissolved using a mercuric nitrate catalyst in a nitric acid (HNO3) solution to facilitate the dissolution of the bulk aluminum cladding. Developmental work at SRS indicated that the plutonium oxide/aluminum compounded matrix could be dissolved without mercury. Various mercury-free conditions were studied to evaluate the rate of dissolution of the Mark 42 compact material and to assess the corrosion rate to the stainless steel dissolver. The elimination of mercury from the dissolution process fit with waste minimization and industrial hygiene goals to reduce the use of mercury in the United States. The mercury-free dissolution technology …
Date: May 14, 2003
Creator: Crooks, W. J., III
System: The UNT Digital Library