Resource Type

Month

Concurrent Multiscale Modeling of Embedded Nanomechanics (open access)

Concurrent Multiscale Modeling of Embedded Nanomechanics

We discuss concurrent multiscale simulations of dynamic and temperature-dependent processes found in nanomechanical systems coupled to larger scale surroundings. We focus on the behavior of sub-micron Micro-Electro-Mechanical Systems (MEMS), especially micro-resonators. The coupling of length scales methodology we have developed for MEMS employs an atomistic description of small but key regions of the system, consisting of millions of atoms, coupled concurrently to a finite element model of the periphery. The result is a model that accurately describes the behavior of the mechanical components of MEMS down to the atomic scale. This paper reviews some of the general issues involved in concurrent multiscale simulation, extends the methodology to metallic systems and describes how it has been used to identify atomistic effects in sub-micron resonators.
Date: April 13, 2001
Creator: Rudd, R E
System: The UNT Digital Library
The model coupling toolkit. (open access)

The model coupling toolkit.

The advent of coupled earth system models has raised an important question in parallel computing: What is the most effective method for coupling many parallel models to form a high-performance coupled modeling system? We present our solution to this problem--The Model Coupling Toolkit (MCT). We explain how our effort to construct the Next-Generation Coupler for NCAR Community Climate System Model motivated us to create this toolkit. We describe in detail the conceptual design of the MCT and explain its usage in constructing parallel coupled models. We present preliminary performance results for the toolkit's parallel data transfer facilities. Finally, we outline an agenda for future development of the MCT.
Date: April 13, 2001
Creator: Larson, J. W.; Jacob, R. L.; Foster, I. & Guo, J.
System: The UNT Digital Library
Resolution dependence in modeling extreme weather events. (open access)

Resolution dependence in modeling extreme weather events.

At Argonne National Laboratory we have developed a high performance regional climate modeling simulation capability based on the NCAR MM5v3.4. The regional climate simulation system at Argonne currently includes a Java-based interface to allow rapid selection and generation of initial and boundary conditions, a high-performance version of MM5v3.4 modified for long climate simulations on our 512-processor Beowulf cluster (Chiba City), an interactive Web-based analysis tool to facilitate analysis and collaboration via the Web, and an enhanced version of the CAVE5d software capable of working with large climate data sets. In this paper we describe the application of this modeling system to investigate the role of model resolution in predicting extreme events such as the ''Hurricane Huron'' event of 11-15 September 1996. We have performed a series of ''Hurricane Huron'' experiments at 80, 40, 20, and 10 km grid resolution over an identical spatiotemporal domain. We conclude that increasing model resolution leads to dramatic changes in the vertical structure of the simulated atmosphere producing significantly different representations of rainfall and other parameters critical to the assessment of impacts of climate change.
Date: April 13, 2001
Creator: Taylor, J. & Larson, J.
System: The UNT Digital Library